
1 www.CompuScholar.com

Java Programming for AP Computer Science A
Course Syllabus and Planner

Course Overview
This AP Computer Science A class uses the CompuScholar Java Programming [1]
curriculum as the primary resource. It is taught as a one-year (two-semester) sequence and
covers all required topics in the “Computer Science A” Course Description published by the
College Board.

Students need to have typical computer usage skills before starting this course; other
introductory programming courses are not required. All required concepts are taught from
the ground up in a fun, step-by-step manner. The course uses a variety of multimedia
content such as full-color, interactive text, narrated instructional videos, and guided
classroom discussions. Strong emphasis is placed on hands-on programming labs to
demonstrate mastery of lesson concepts.

The CompuScholar Java Programming curriculum is fully aligned with the AP CS A
recommended Unit Sequence. This allows teachers to easily leverage the additional
material and practice questions in the AP Classroom.

Textbook Resource
This course uses the following instructional resource:

[1] Java Programming online text, by CompuScholar, Inc. 2023, ISBN 978-1-946113-99-3

https://www.compuscholar.com/schools/courses/java/

https://www.compuscholar.com/schools/courses/java/

 2 www.CompuScholar.com

Course Material
The course material is designed to appeal to a variety of students, from traditional learners
who thrive on written text to audio-visual students who enjoy a multi-media format. All
content is delivered through an online system that allows students to work seamlessly both
in the classroom and at home.

The course consists of the following student-facing elements:

• Instructional Videos – optional (not required) but enjoyed by many students as an
audio-visual introduction and reinforcement of the lesson topics.

• Lesson Text – required reading, contains full topic details and live coding exercises
• Quizzes and Exams – multiple-choice and automatically graded by our system
• Chapter Activities – hands-on projects, submitted for a grade

Teachers additionally have access to:

• Teacher’s Guides – for each lesson, with suggested classroom discussion questions
• Quiz and Exam Answer Keys – PDFs for quick reference
• Activity Solution Guides – fully coded activity solutions for each chapter activity

Programming Environment and Device Requirements
CompuScholar provides an in-browser Java coding environment. This online feature may be
used by students to complete all exercises and activities in all required AP chapters. When
using the online coding environment:

• No local software installation is needed to prepare for the AP exam.
• The AP material can be completed from any web browser on any device

(including Chromebooks and tablets).

Later, optional chapters contain a mixture of activities. AP teachers may select any of these
topics for students after the AP exam. Some optional activities can be done in
CompuScholar’s online environment, while others are completed using an external IDE.

When needed, CompuScholar recommends a locally installed JDK and Eclipse platform for
an external IDE (see Chapters 28 and 29 for instructions). Teachers may also select any other
locally installed or online IDE. Device requirements for an optional, external IDE depend
on the IDE selected.

 3 www.CompuScholar.com

Project Grading
Each chapter normally contains one or more hands-on, graded activities. The activities in all
required AP chapters are fully auto graded by the CompuScholar system. Teachers
have complete control over the auto-graded results.

Some activities in later, optional chapters are free-form (creative) or completed in an external
IDE. The teacher is responsible for grading those creative or external projects.

Course Outline
The course includes the required content organized into the following units based on the AP
Course and Exam Description (CED):

• CED Unit 1: Primitive Types – Course Chapters 2, 3, 4

• CED Unit 2: Using Objects - Course Chapters 5, 6, 7

• CED Unit 3: Boolean Expressions and if Statements - Course Chapters 8, 9, 10

• CED Unit 4: Iteration – Course Chapters 11, 12, 13

• CED Unit 5: Writing Classes – Course Chapters 14, 15, 16

• CED Unit 6: Array – Course Chapter 18

• CED Unit 7: ArrayList – Course Chapters 19, 20

• CED Unit 8: 2D Array – Course Chapter 21

• CED Unit 9: Inheritance – Course Chapters 22, 23

• CED Unit 10: Recursion – Course Chapter 24

 4 www.CompuScholar.com

Course Navigation
Chapter 1 contains computing, ethics, and security topics recommended (but not tested) by
AP CS A and required by many state and national computer science curriculum standards.
AP teachers may opt to complete Chapter 1 in sequence or return to the topics after the AP
CS A exam.

Chapters 2 – 24 should be completed in sequence and cover all required topics on the AP
CS A exam, plus certain other highly recommended software skills. These chapters include
substantial, hands-on lab work over the 20-hour minimum AP requirement. The mid-term
project in Chapter 17 may be omitted or postponed if desired (no new skills).

Typical classes will finish all required AP content before the exam administration in May. We
recommend using the remaining time before the exam to review the College Board’s
published practice exams and any other external source of practice FRQ and multiple-choice
problems.

Chapters 25 – 33 contain optional topics that are not required for AP CS A. Teachers may
review and select any of these optional topics for students as time permits after the AP CS A
exam. Some optional chapters require the use of an external IDE and/or will be graded by
the teacher.

Supplemental Chapters 1 – 4 contain a variety of enrichment topics that may be required
by individual states to satisfy requirements for other coding or digital literacy courses. AP
teachers may select any of these topics (especially Supplemental Chapter 3) to complete “Big
Ideas” like “Impact of Computing” that are not tested on the exam.

 5 www.CompuScholar.com

Course Planner
The following pages contain an outline of course content by AP CS A unit title and
matching textbook chapter. Correlations to the AP CS A recommended Unit Sequence
are highlighted. Additional, detailed mappings to AP CS A Learning Objectives and Essential
Knowledge (LOEKs) are appended at the end of this document.

A typical school year consists of 36 calendar weeks or 180 days of school. After completing
the first 24 chapters, most classes will have several weeks left for AP exam prep, make-up
work, and optional topics. Teachers can select from optional topics before and after the
exam, as time permits.

Each “day” listed below represents one typical day or class period of 45 – 60 minutes. In most
cases, students will complete one lesson per day (including the quiz), 1 day per lab, and 1
day per chapter test. Some classes may move faster or slower than the suggested pace.

Semester 1 Timeline
Days CompuScholar Chapter and Lab AP CS A Unit Sequence
6 Chapter 1: Computing Concepts

* Evolution of Computers
* Computer Hardware
* Computer Software
* Computer Ethics
* Computer Security

General curricular requirements
(N/A on AP Exam)
Schedule as time permits

Days CompuScholar Chapter and Lab AP CS A UNIT 1: Primitive Types
6 Chapter 2: Getting Started with Java

* Common Programming Languages
* The Java Platform
* Writing Your First Program
* Help and Reference Documentation
LAB: Shopping List

1.1 Why Programming? Why Java?

5 Chapter 3: Data Types and Variables
* Primitive Data Types
* Variables
* Printing Data
LAB: Treasure Map (Big Idea: VAR)

1.2 Variables and Data Types
1.3 Expressions and Assignment
Statements

 6 www.CompuScholar.com

Days CompuScholar Chapter and Lab AP CS A UNIT 1: Primitive Types
5 Chapter 4: Working with Numbers

* Simple Math Operations
* Compound Assignments and Shortcuts
* Type Casting and Truncation
LAB: Magic Math (Big Idea: VAR)

1.4 Compound Assignment
Operators (shortcuts)
1.5 Casting and Ranges of Variables

Days CompuScholar Chapter and Lab AP CS A: UNIT 2: Using Objects
8 Chapter 5: Introducing Objects

* Java Classes
* Reference Variables and Strings
* Calling Methods
* Properties and Constructors
* Static and Overloaded Methods
* User Input with Scanner
LAB: Sketch Robot (Big Idea: VAR, MOD)

2.1 Objects: Instances of Classes
2.2 Creating and Storing Objects
(Instantiation)
2.3 Calling a Void Method
2.4 Calling a Void Method with
Parameters
2.5 Calling a Non-void Method

5 Chapter 6: Working with Strings
* Comparing Strings
* Common String Operations
* Formatting and Building Strings
LAB: String Theory (Big Idea: VAR, MOD)

2.6 String Objects: Concatenation,
Literals, and More
2.7 String Methods

6 Chapter 7: Numbering Systems and Java
Math
* Java Wrapper Classes & Numeric
Conversion
* Numbers in Binary, Octal and Hex
* Java Math Class
* Numeric Limitations
LAB: Math Factory (Big Idea: VAR, MOD)

2.8 Wrapper Classes: Integer and
Double
2.9 Using the Math Class

 7 www.CompuScholar.com

Days CompuScholar Chapter and Lab AP CS A: UNIT 3: Boolean
Expressions and if Statements

6 Chapter 8: Logic and Decision-Making
* Logical Expressions and Relational
Operators
* Making Decisions with if()
* Using "else-if" and "else"
* The "switch" Statement
LAB: Banking System (Big Idea: CON)

3.1 Boolean Expressions
3.2 if Statements and Control Flow
3.3 if-else Statements
3.4 else if Statements

5 Chapter 9: More Complex Logic
* Comparing Objects and References
* Compound Expressions
* Boolean Algebra and Truth Tables
LAB: Wild Card (Big Idea: CON)

3.5 Compound Boolean
Expressions
3.6 Equivalent Boolean Expressions
3.7 Comparing Objects

5 Chapter 10: Handling Exceptions
* Understanding Exceptions
* Catching Exceptions
* Validating User Input
LAB: Calculator Madness (Big Idea: CON)

Highly recommended skills as
students begin to produce more
complex code.

4 Chapter 11: Debugging
* Finding Runtime Errors
* Debugger Concepts
LAB: Bug Hunt (Big Idea: CON)

Highly recommended skills as
students begin to produce more
complex code.

Days CompuScholar Chapter and Lab AP CS A: UNIT 4: Iteration
6 Chapter 12: Iteration

* For Loops
* While Loops
* Continue, Break and Return
* Nested Loops
LAB: Fun Factorials (Big Idea: CON)

4.1 while Loops
4.2 for Loops

6 Chapter 13: Algorithms
* Designing with Flowcharts
* Writing Pseudocode
* Common Mathematical Algorithms
* Common String Algorithms
LAB: Meal Time (Big Idea: CON)

4.3 Developing Algorithms Using
Strings
4.4 Nested Iteration
4.5 Informal Code Analysis

 8 www.CompuScholar.com

Days CompuScholar Chapter and Lab AP CS A: UNIT 5: Writing Classes
7 Chapter 14: Creating Java Classes

* Object-Oriented Concepts
* Defining Classes and Packages
* Class Properties
* Constructors
* Class Methods
LAB: Dog House (Big Idea: MOD)

5.1 Anatomy of a Class
5.2 Constructors
5.3 Documentation with Comments
5.4 Accessor Methods
5.5 Mutator Methods

7 Chapter 15: Working with Methods
* Documentation and Design
* Variable Scope and Access
* Data Encapsulation
* Method Overloading
* Object Interfaces
LAB: Let's Go Racing! (Big Idea: MOD)

5.6 Writing Methods
5.8 Scope and Access

5 Chapter 16: Static Concepts
* Static Properties
* Static Methods
* Static, Object, and "this" References
LAB: Art School (Big Idea: MOD)

5.7 Static Variables and Methods
5.9 this Keyword
5.10 Ethical and Social Implications
of Computing Systems (Not on AP
Exam) - See Chapter 1

Days CompuScholar Chapter and Lab Mid-Term Project
4 Chapter 17: Mid-Term Project

* Introducing the "Remote Control"
Project
LAB: Creating the Schedule
LAB: Building a Television
LAB: Defining the Remote
(Big Ideas: VAR, MOD, CON)

Schedule as time permits (no new
skills)

85 -
95

Total Days (depending on the
scheduling of Chapters 1 and 17)

 9 www.CompuScholar.com

Semester 2 Timeline
Days CompuScholar Chapter and Lab AP CS A UNIT 6: Array
7 Chapter 18: 1D Arrays

* Array Concepts
* Array Traversal
* Iterators and Enhanced for() loops
* Array Algorithms
* More Array Algorithms
LAB: Whack-A-Mole (Big Ideas: VAR,
CON)

6.1 Array Creation and Access
6.2 Traversing Arrays
6.3 Enhanced for Loop for Arrays
6.4 Developing Algorithms Using
Arrays

Days CompuScholar Chapter and Lab AP CS A UNIT 7: ArrayList
6 Chapter 19: Lists and ArrayLists

* Java Lists
* ArrayLists
* Iterators and Enhanced for() Loops
* Algorithms with ArrayLists
LAB: Train Yard Jumble (Big Ideas: VAR,
CON)

7.1 Introduction to ArrayList
7.2 ArrayList Methods
7.3 Traversing ArrayLists

7 Chapter 20: Searching and Sorting
* Bubble Sort
* Selection Sort
* Insertion Sort
* Sequential and Binary Searches
LAB: Ducks in a Row (Big Ideas: VAR,
CON)

7.4 Developing Algorithms Using
ArrayLists
7.5 Searching
7.6 Sorting
7.7 Ethical Issues Around Data
Collection (see Chapter 1)

Days CompuScholar Chapter and Lab AP CS A UNIT 8: 2D Array
6 Chapter 21: 2D Arrays

* 2D Arrays
* Traversal and Ordering
* Array of Arrays
* 2D Array Algorithms
LAB: Gold Rush (Big Ideas: VAR, CON,
MOD)

8.1 2D Arrays
8.2 Traversing 2D Arrays

 10 www.CompuScholar.com

Days CompuScholar Chapter and Lab AP CS A UNIT 9: Inheritance
5 Chapter 22: Inheritance

* Superclass and Subclass Concepts
* Subclass Constructors
* Using Superclass and Subclass
References
LAB: Lab Rats (Big Idea: MOD)

9.1 Creating Superclasses and
Subclasses
9.2 Writing Constructors for
Subclasses

6 Chapter 23: Polymorphism
* Overriding Superclass Methods
* Abstract Classes and Methods
* Using Superclass Features with "super"
* The "Object" Superclass
LAB: Social Ladder (Big Idea: MOD)

9.3 Overriding Methods
9.4 super Keyword
9.5 Creating References Using
Inheritance Hierarchies
9.6 Polymorphism
9.7 Object Superclass

Days CompuScholar Chapter and Lab AP CS A UNIT 10: Recursion
5 Chapter 24: Recursion

* Recursion
* Recursive Binary Search
* Merge Sort
LAB: File Explorer (Big Idea: CON)

10.1 Recursion
10.2 Recursive Searching and
Sorting

42 Total Days in Semester 2 (all required
AP CS A topics complete at this point)

Classes who complete the first 24 chapters at this point have spent approximately 134 days
and covered all tested AP CS A topics. The remaining class time should be spent in
preparation for the AP exam and covering other required topics and big ideas (digital
citizenship, legal and ethical impacts of computing, etc.) found in Chapters 1, 27,
Supplemental Chapter 3, and any other teacher-selected chapters and lessons.

Please see below for information on the additional chapters and Supplemental topics.

 11 www.CompuScholar.com

The following table suggests the timeline needed for each additional or supplemental
chapter, along with notes as to the programming environment and grading approach. There
are more chapters available than students can complete in a single year, so teachers can pick
topics as time permits!

Days CompuScholar Chapter and Lab Notes
5 Chapter 25: File Access

* Data Streams
* Reading and Writing Text Data
* Reading and Writing Binary Data
LAB: Address CSV

CompuScholar online environment,
project auto-graded by our system

5 Chapter 26: Object Composition and
Copying
* Functional Decomposition
* Composite Classes
* Copying Objects
LAB: Designing a Composite Class

Teacher-graded project

10-
15

Chapter 27: Team Project
* Design Processes and Teamwork
* Requirements and Design Documents
LAB: Team Project Requirements
LAB: Project Design
LAB: Team Project Implementation
* Testing Your Code
LAB: Team Project Testing
 (Big Idea: IOC)

CompuScholar online environment
or external IDE, teacher-graded
project

3 Chapter 28: Running Java Locally
* Installing the JDK
* Local Source Code
* Building and Running from the
Command Line

“How-to” chapter to create a local
development environment

4 Chapter 29: The Eclipse IDE
* Introducing Eclipse
* Eclipse Java IDE Walk-Through
* Creating an Eclipse Project
* The Eclipse Debugger

“How-to” chapter to install and use
a local IDE

 12 www.CompuScholar.com

Days CompuScholar Chapter and Lab Notes
6 Chapter 30: Graphical Java Programs

* Java Swing
* Creating a Simple Window
* Event-Driven Programming
* Layout Managers
LAB: Phone Dialer

Requires external IDE (e.g., Eclipse)
with Java Swing support. Teacher-
graded projects.

5 Chapter 31: Swing Input Controls
* Text and Numeric Input
* List Input
* Option Input
LAB: Pizza Place

Requires external IDE (e.g., Eclipse)
with Java Swing support. Teacher-
graded projects.

5 Chapter 32: Vector and Bitmap Images
* Screen Coordinates
* Drawing Shapes
* Drawing Images
LAB: Sky Art

Requires external IDE (e.g., Eclipse)
with Java Swing support. Teacher-
graded projects.

4 Chapter 33: Program Efficiency
* Algorithm Performance (Big-O)
* Measuring Sorting Efficiency
LAB: Comparison of Sorting Algorithms

External IDE, teacher-graded project

12 Supplemental Chapter 1: Enrichment
Topics
* Encoding Data
 Lab: Secret Message
* JavaDoc
 Lab: Creating HTML
* Advanced Algorithms
* Stock Market Simulation
 Lab: Stock Trading (Big Idea: IOC)
* Stacks and Queues
 Lab: Candy Factory (Big Idea: VAR)
* Exploring UML
 Lab: UML Design (Big Idea: MOD)

See individual lessons and activities
for the programming environment
and grading approach.

 13 www.CompuScholar.com

Days CompuScholar Chapter and Lab Notes
8 Supplemental Chapter 2: Software and

Industry
* Software Development Process
 Lab: Your SDLC Docs
* Software Development Careers
 Lab: Career Exploration
* Student Organizations
 Lab: CTSO Exploration
* Technical Writing
 Lab: Technical Writing

Offline work, teacher-graded
projects

4 Supplemental Chapter 3: Computers
and Modern Society
* Managing your Digital Identity
 Lab: Privacy Check-up (Big Idea: IOC)
* The Impact of Computing
 Lab: Impact Analysis (Big Idea: IOC)
* Artificial Intelligence
 Lab: Exploring Self-Driving Cars (Big
Idea: IOC)
* Productivity Tools
 Lab: Productivity Report

Offline work, teacher-graded
projects

6 Supplemental Chapter 4: Computer
Networking
* Basic Networking
* Network Topology
* Network Addressing
* Network Design
* Network Protocols
Lab: Animal Palace

Offline work, teacher-graded project

 14 www.CompuScholar.com

“Big Ideas” and Student Activities
The hands-on labs and student activities found within each chapter reinforce one or more
“Big Ideas” (MOD, VAR, CON, IOC) from the AP Course and Exam Description (CED). The
outline above lists the corresponding Big Idea(s) relevant to each lab. Those labs are
categorized below by Big Idea, for convenience.

Big Idea 1: MODULARITY (MOD)
Chapter 5 LAB: Sketch Robot
Chapter 6 LAB: String Theory
Chapter 7 LAB: Math Factory
Chapter 14 LAB: Dog House
Chapter 15 LAB: Let's Go Racing
Chapter 16 LAB: Art School

Chapter 17 LAB: Remote Control
Chapter 21 LAB: Gold Rush
Chapter 22 LAB: Lab Rats
Chapter 23 LAB: Social Ladder
Supplemental Chapter 1 LAB: UML Design

Big Idea 2: VARIABLES (VAR)
Chapter 5 LAB: Sketch Robot
Chapter 6 LAB: String Theory
Chapter 7 LAB: Math Factory
Chapter 14 LAB: Dog House
Chapter 15 LAB: Let's Go Racing
Chapter 16 LAB: Art School

Chapter 17 LAB: Remote Control
Chapter 21 LAB: Gold Rush
Chapter 22 LAB: Lab Rats
Chapter 23 LAB: Social Ladder
Supplemental Chapter 1 LAB: UML Design

Big Idea 3: CONTROL (CON)
Chapter 8 LAB: Banking System
Chapter 9 LAB: Wild Card
Chapter 10 LAB: Calculator Madness
Chapter 11 LAB: Bug Hunt
Chapter 12 LAB: Fun Factorials
Chapter 13 LAB: Meal Time

Chapter 17 LAB: Remote Control
Chapter 18 LAB: Whack-A-Mole
Chapter 19 LAB: Train Yard Jumble
Chapter 20 LAB: Ducks in a Row
Chapter 21 LAB: Gold Rush
Chapter 24 LAB: File Explorer

Big Idea 4: IMPACT OF COMPUTING (IOC)
Chapter 27 LAB: Team Project
Supplemental Chapter 1 LAB: Stock Market Trading
Supplemental Chapter 3 LAB: Privacy Check-up
Supplemental Chapter 3 LAB: Impact Analysis
Supplemental Chapter 3 LAB: Exploring Self-Driving Cars

 15 www.CompuScholar.com

Computational Thinking Practices
The AP Course and Exam Description (CED) lists five “Computational Thinking” practices with
itemized skills under each practice. The Java Programming[1] course provides hands-on
opportunities for students to practice these skills in the form of in-lesson exercises and/or
chapter labs.

All Computational Thinking skills are reinforced multiple times within the course. The table
below describes one instance of an in-lesson exercise or chapter lab that supports each skill.

Practice 1: Program Design and
Algorithm Development

 Chapter and Lab

1.A Determine an appropriate program
design to solve a problem or
accomplish a task (not assessed).

Chapter 13 LAB: Meal Time – Students will
design and implement a program to simulate a
specific algorithm.

1.B Determine code that would be used
to complete code segments.

Chapter 6 LAB: String Theory – Students will
complete the provided starting code to
manipulate String data in specific ways.

1.C Determine code that would be used
to interact with completed program
code.

Chapter 5 LAB: Sketch Robot – Students will
write the main program logic to interact with a
provided SketchRobot class.

Practice 2: Code Logic Chapter and Lab
2.A Apply the meaning of specific
operators.

Chapter 9 LAB: Wild Card – Students will apply
multiple relational and conditional operators to
implement the rules for determining the wild
cards in a game.

2.B Determine the result or output
based on statement execution order in
a code segment without method calls
(other than output).

Chapter 7 LAB: Math Factory – Students are
giving starting code and expected output and
must complete the sequential logic to match
the output.

2.C Determine the result or output
based on the statement execution
order in a code segment containing
method calls.

Chapter 14, Lesson 5 Exercises - Students are
challenged to predict the output from given
code segments containing multiple method
calls.

2.D Determine the number of times a
code segment will execute.

Chapter 12 LAB: Fun Factorials – Students will
apply loops to produce factorial calculations,
taking care to iterate the correct number of
times to produce the desired result.

 16 www.CompuScholar.com

Practice 3: Code Implementation Chapter and Lab
3.A Write program code to create
objects of a class and call methods.

Chapter 15 LAB: Let’s Go Racing – Students
will create Dragster, Cheetah, and UFO classes,
each with properties and methods to
participate in a race.

3.B Write program code to define a new
type by creating a class.

Chapter 14 LAB: Dog House – Students will
create a new Dog class from scratch to work
with an existing House class.

3.C Write program code to satisfy
method specifications using
expressions, conditional statements,
and iterative statements.

Chapter 20 LAB: Ducks in a Row – Students
will write methods that include expressions,
conditionals, and iterative loops to complete a
sorting and searching program.

3.D Write program code to create,
traverse, and manipulate elements in
1D array or ArrayList objects.

Chapter 18 LAB: Whack-A-Mole – Students
create, traverse, and manipulate “Mole” objects
in a 1D array as part of a game.

3.E Write program code to create,
traverse, and manipulate elements in
2D array objects.

Chapter 20 LAB: Gold Rush – Students will
simulate the survey of a land grid for amounts
of gold by creating, traversing, and
manipulating 2D arrays.

Practice 4: Code Testing Chapter and Lab
4.A Use test-cases to find errors or
validate results.

Every lab in Chapters 2 through 24 includes an
itemized list of test cases that students will use
to validate their code against expected results.
Additionally, Chapter 27 LAB 3: Project
Testing, asks students to create a custom test
plan document and iteratively run test cases
until all requirements are met.

4.B Identify errors in program code. Chapter 11 LAB: Bug Hunt – Students will
identify and resolve multiple errors in a starting
program to convert temperatures between
Fahrenheit and Celsius.

4.C Determine if two or more code
segments yield equivalent results.

Chapter 9, Lesson 3 Exercises - Students will
use truth tables to compare code segments and
logical expressions for equivalency.

 17 www.CompuScholar.com

Practice 5: Documentation Chapter and Lab
5.A Describe the behavior of a given
segment of program code.

Chapter 8, Lesson 2 Exercises – Students are
given starting code that includes if() conditions
and asked to describe the expected behavior
and output.

5.B Explain why a code segment will not
compile or work as intended.

Chapter 4, Lesson 3 Exercises – Students
examine type casting and truncation in the
context of mathematical expressions with
mixed types that produce unexpected results.

5.C Explain how the result of program
code changes, given a change to the
initial code.

Chapter 12, Lesson 1 Exercises – Students
examine example for() loops and predict how
output will differ when changes are made to
loop expressions or body statements.

5.D Describe the initial conditions that
must be met for a program segment to
work as intended or described.

Chapter 10, Lesson 3 Exercises – Students
examine input-handling logic and identify the
correct type of input that must be received for
that logic to work as expected.

The following pages contain detailed cross-reference tables that map every AP
Computer Science A topic and essential knowledge to specific course chapters and
lessons. For convenience, these cross-references are also available as a separate
document at the following online location:

https://www.compuscholar.com/docs/java/AP_Exam_Cross_Reference.pdf

https://www.compuscholar.com/docs/java/AP_Exam_Cross_Reference.pdf

Copyright, CompuScholar, Inc.

https://www.compuscholar.com/schools/courses/java Page 1 of 18

CompuScholar, Inc.

Alignment to the College Board AP Computer Science A

Learning Objectives and Essential Knowledge (LOEK)

AP Course Details:

Course Title: AP Computer Science A

Grade Level: 9th - 12th grades

Standards
Version:

Fall 2020

Standards Link: ap-computer-science-a-course-and-exam-description.pdf

CompuScholar Course Details:

Course Title: Java Programming

Course ISBN:

Course Year:

978-1-946113-99-3
2023

Note 1: Citation(s) listed may represent a subset of the instances where objectives are met throughout the course.

Note 2: Citation(s) for a "Lesson" refer to the "Lesson Text" elements and associated "Activities" within the course,

unless otherwise noted. The "Instructional Video" components are supplements designed to introduce or reinforce

the main lesson concepts, and the Lesson Text contains full details.

AP Course Description

This course teaches students the fundamentals of the Java programming language and covers all required topics

defined by the College Board's AP Computer Science A course description.

AP Lab Requirements

The AP Computer Science A course must include a minimum of 20
hours of hands-on structured-lab experiences to engage students in
individual or group problem solving.

This course easily exceeds the 20-
hour minimum lab requirement
with hands-on lesson exercises

and labs in every chapter.

AP Topics and Essential Knowledge

UNIT 1: Primitive Types CITATION(S)

Topic 1.1: Why Programming? Why Java?

MOD-1.A.1 - System.out.print and System.out.println display information on
the computer monitor.

Chapter 3, Lesson 3

MOD-1.A.2 - System.out.println moves the cursor to a new line after the
information has been displayed, while System.out.print does not.

Chapter 3, Lesson 3

https://apcentral.collegeboard.org/pdf/ap-computer-science-a-course-and-exam-description.pdf

Copyright, CompuScholar, Inc.

https://www.compuscholar.com/schools/courses/java Page 2 of 18

VAR-1.A.1 - A string literal is enclosed in double quotes. Chapter 2, Lesson 3

TOPIC 1.2: Variables and Data Types

VAR-1.B.1 - A type is a set of values (a domain) and a set of operations on
them.

Chapter 3, Lesson 1

VAR-1.B.2 - Data types can be categorized as either primitive or reference. Chapter 3, Lesson 1

VAR-1.B.3 - The primitive data types used in this course define the set of
operations for numbers and Boolean values.

Chapter 3, Lesson 1

VAR-1.C.1 - The three primitive data types used in this course are int, double,
and boolean.

Chapter 3, Lesson 1

VAR-1.C.2 - Each variable has associated memory that is used to hold its
value.

Chapter 3, Lessons 1, 2

VAR-1.C.3 - The memory associated with a variable of a primitive type holds
an actual primitive value.

Chapter 3, Lessons 1, 2

VAR-1.C.4 - When a variable is declared final, its value cannot be changed
once it is initialized.

Chapter 3, Lesson 2

TOPIC 1.3: Expressions and Assignment Statements

CON-1.A.1 - A literal is the source code representation of a fixed value. Chapter 4, Lesson 1

CON-1.A.2 - Arithmetic expressions include expressions of type int and
double.

Chapter 4, Lesson 1

CON-1.A.3 - The arithmetic operators consist of +, −, *, /, and % Chapter 4, Lesson 1

CON-1.A.4 - An arithmetic operation that uses two int values will evaluate to
an int value.

Chapter 4, Lesson 1

CON-1.A.5 - An arithmetic operation that uses a double value will evaluate to
a double value.

Chapter 4, Lesson 1

CON-1.A.6 - Operators can be used to construct compound expressions. Chapter 4, Lesson 2

CON-1.A.7 - During evaluation, operands are associated with operators
according to operator precedence to determine how they are grouped.

Chapter 4, Lesson 1

CON-1.A.8 - An attempt to divide an integer by zero will result in an
ArithmeticException to occur.

Chapter 4, Lesson 1

CON-1.B.1 - The assignment operator (=) allows a program to initialize or
change the value stored in a variable. The value of the expression on the right
is stored in the variable on the left.

Chapter 4, Lesson 1

CON-1.B.2 - During execution, expressions are evaluated to produce a single
value.

Chapter 4, Lesson 1

CON-1.B.3 - The value of an expression has a type based on the evaluation of
the expression.

Chapter 4, Lesson 1

TOPIC 1.4: Compound Assignment Operators

CON-1.B.4 - Compound assignment operators (+=, −=, *=, /=, %=) can be used
in place of the assignment operator.

Chapter 4, Lesson 2

Copyright, CompuScholar, Inc.

https://www.compuscholar.com/schools/courses/java Page 3 of 18

CON-1.B.5 - The increment operator (++) and decrement operator (−−) are
used to add 1 or subtract 1 from the stored value of a variable or an array
element. The new value is assigned to the variable or array element.

Chapter 4, Lesson 2

TOPIC 1.5: Casting and Ranges of Variables

CON-1.C.1 - The casting operators (int) and (double) can be used to create a
temporary value converted to a different data type.

Chapter 4, Lesson 3

CON-1.C.2 - Casting a double value to an int causes the digits to the right of
the decimal point to be truncated.

Chapter 4, Lesson 3

CON-1.C.3 - Some programming code causes int values to be automatically
cast (widened) to double values.

Chapter 4, Lesson 3

CON-1.C.4 - Values of type double can be rounded to the nearest integer by
(int)(x + 0.5) or (int)(x – 0.5) for negative numbers.

Chapter 4, Lesson 3

CON-1.C.5 - Integer values in Java are represented by values of type int, which
are stored using a finite amount (4 bytes) of memory. Therefore, an int value
must be in the range from Integer.MIN_VALUE to Integer.MAX_VALUE
inclusive.

Chapter 3, Lesson 1
Chapter 7, Lesson 4

CON-1.C.6 - If an expression would evaluate to an int value outside of the
allowed range, an integer overflow occurs. This could result in an incorrect
value within the allowed range.

Chapter 3, Lesson 1
Chapter 7, Lesson 4

UNIT 2: Using Objects CITATION(S)

TOPIC 2.1: Objects: Instances of Classes

MOD-1.B.1 - An object is a specific instance of a class with defined attributes. Chapter 5, Lesson 1

MOD-1.B.2 A class is the formal implementation, or blueprint, of the
attributes and behaviors of an object.

Chapter 5, Lesson 1

TOPIC 2.2: Creating and Storing Objects (Instantiation)

MOD-1.C.1 - A signature consists of the constructor name and the parameter
list.

Chapter 5, Lesson 3

MOD-1.C.2 - The parameter list, in the header of a constructor, lists the types
of the values that are passed and their variable names. These are often
referred to as formal parameters.

Chapter 5, Lesson 3

MOD-1.C.3 - A parameter is a value that is passed into a constructor. These
are often referred to as actual parameters.

Chapter 5, Lesson 3

MOD-1.C.4 - Constructors are said to be overloaded when there are multiple
constructors with the same name but a different signature.

Chapter 5, Lesson 3

MOD-1.C.5 - The actual parameters passed to a constructor must be
compatible with the types identified in the formal parameter list.

Chapter 5, Lesson 3

MOD-1.C.6 - Parameters are passed using call by value. Call by value initializes
the formal parameters with copies of the actual parameters.

Chapter 5, Lesson 3

MOD-1.D.1 - Every object is created using the keyword new followed by a call
to one of the class’s constructors.

Chapter 5, Lesson 3

MOD-1.D.2 - A class contains constructors that are invoked to create objects.
They have the same name as the class.

Chapter 5, Lesson 3

Copyright, CompuScholar, Inc.

https://www.compuscholar.com/schools/courses/java Page 4 of 18

MOD-1.D.3 - Existing classes and class libraries can be utilized as appropriate
to create objects.

Chapter 5, Lessons 1,2

MOD-1.D.4 - Parameters allow values to be passed to the constructor to
establish the initial state of the object.

Chapter 5, Lesson 3

VAR-1.D.1 - The keyword null is a special value used to indicate that a
reference is not associated with any object.

Chapter 5, Lesson 2

VAR-1.D.2 - The memory associated with a variable of a reference type holds
an object reference value or, if there is no object, null. This value is the
memory address of the referenced object.

Chapter 5, Lesson 2

TOPIC 2.3: Calling a Void Method

MOD-1.E.1 - An object’s behavior refers to what the object can do (or what
can be done to it) and is defined by methods.

Chapter 5, Lesson 4

MOD-1.E.2 - Procedural abstraction allows a programmer to use a method by
knowing what the method does even if they do not know how the method
was written.

Chapter 5, Lesson 4

MOD-1.E.3 - A method signature for a method without parameters consists of
the method name and an empty parameter list.

Chapter 5, Lesson 4

MOD-1.E.4 - A method or constructor call interrupts the sequential execution
of statements, causing the program to first execute the statements in the
method or constructor before continuing. Once the last statement in the
method or constructor has executed or a return statement is executed, flow
of control is returned to the point immediately following where the method
or constructor was called.

Chapter 5, Lesson 4

MOD-1.E.5 - Non-static methods are called through objects of the class. Chapter 5, Lesson 4

MOD-1.E.6 - The dot operator is used along with the object name to call non-
static methods.

Chapter 5, Lesson 4

MOD-1.E.7 - Void methods do not have return values and are therefore not
called as part of an expression.

Chapter 5, Lesson 4

MOD-1.E.8 - Using a null reference to call a method or access an instance
variable causes a NullPointerException to be thrown.

Chapter 5, Lesson 4

TOPIC 2.4: Calling a Void Method with Parameters

MOD-1.F.1 - A method signature for a method with parameters consists of
the method name and the ordered list of parameter types.

Chapter 5, Lesson 4

MOD-1.F.2 - Values provided in the parameter list need to correspond to the
order and type in the method signature.

Chapter 5, Lesson 4

MOD-1.F.3 - Methods are said to be overloaded when there are multiple
methods with the same name but a different signature.

Chapter 5, Lessons 3, 4

TOPIC 2.5: Calling a Non-void Method

MOD-1.G.1 - Non-void methods return a value that is the same type as the
return type in the signature. To use the return value when calling a non-void
method, it must be stored in a variable or used as part of an expression.

Chapter 5, Lesson 4

TOPIC 2.6: String Objects: Concatenation, Literals, and More

VAR-1.E.1 - String objects can be created by using string literals or by calling
the String class constructor.

Chapter 6, Lesson 1

Copyright, CompuScholar, Inc.

https://www.compuscholar.com/schools/courses/java Page 5 of 18

VAR-1.E.2 - String objects are immutable, meaning that String methods do not
change the String object.

Chapter 6, Lesson 2

VAR-1.E.3 - String objects can be concatenated using the + or += operator,
resulting in a new String object.

Chapter 5, Lesson 2
Chapter 6, Lesson 3

VAR-1.E.4 - Primitive values can be concatenated with a String object. This
causes implicit conversion of the values to String objects.

Chapter 5, Lesson 2
Chapter 6, Lesson 3

VAR-1.E.5 - Escape sequences start with a \ and have a special meaning in
Java. Escape sequences used in this course include \”, \\, and \n.

Chapter 3, Lesson 3
Chapter 6, Lesson 3

TOPIC 2.7: String Methods

VAR-1.E.6 - Application program interfaces (APIs) and libraries simplify
complex programming tasks.

Chapter 5, Lessons 1, 2
Chapter 6, Lesson 2

VAR-1.E.7 - Documentation for APIs and libraries are essential to
understanding the attributes and behaviors of an object of a class.

Chapter 5, Lesson 1
Chapter 6, Lesson 2

VAR-1.E.8 - Classes in the APIs and libraries are grouped into packages. Chapter 5, Lessons 1, 5

VAR-1.E.9 - The String class is part of the java.lang package. Classes in the
java.lang package are available by default.

Chapter 5, Lessons 1, 2

VAR-1.E.10 - A String object has index values from 0 to length– 1. Attempting
to access indices outside this range will result in an
IndexOutOfBoundsException.

Chapter 6, Lesson 2

VAR-1.E.11 - A String object can be concatenated with an object reference,
which implicitly calls the referenced object’s toString method.

Chapter 7, Lesson 1

VAR-1.E.12 - The following String methods and constructors—including what
they do and when they are used—are part of the Java Quick Reference:

See Below

String(String str) — Constructs a new String object that represents
the same sequence of characters as str Chapter 5, Lesson 3

int length() — Returns the number of characters in a String object
Chapter 6, Lessons 1, 2

String substring(int from, int to) — Returns the substring beginning
at index from and ending at index to - 1 Chapter 6, Lesson 2

String substring(int from)— Returns substring(from, length())
Chapter 6, Lesson 2

int indexOf(String str) — Returns the index of the first occurrence of
str; returns -1 if not found Chapter 6, Lesson 2

boolean equals(String other)— Returns true if this is equal to other;
returns false otherwise Chapter 6, Lesson 2

int compareTo(String other)— Returns a value < 0 if this is less than
other; returns zero if this is equal to other; returns a value > 0 if this
is greater than other

Chapter 6, Lesson 2

VAR-1.E.13 - A string identical to the single element substring at position
index can be created by calling substring(index, index + 1).

Chapter 6, Lesson 2

TOPIC 2.8: Wrapper Classes: Integer and Double

VAR-1.F.1 - The Integer class and Double class are part of the java.lang
package.

Chapter 7, Lesson 1

Copyright, CompuScholar, Inc.

https://www.compuscholar.com/schools/courses/java Page 6 of 18

VAR-1.F.2 - The following Integer methods and constructors — including what
they do and when they are used—are part of the Java Quick Reference:

See below

Integer(int value) — Constructs a new Integer object that represents
the specified int value Chapter 7, Lesson 1

Integer.MIN_VALUE — The minimum value represented by an int or
Integer Chapter 7, Lesson 1

Integer.MAX_VALUE — The maximum value represented by an int or
Integer Chapter 7, Lesson 1

int intValue() — Returns the value of this Integer as an int Chapter 7, Lesson 1

VAR-1.F.3 - The following Double methods and constructors — including what
they do and when they are used—are part of the Java Quick Reference:

See below

Double(double value) —Constructs a new Double object that
represents the specified double value

Chapter 7, Lesson 1

double doubleValue() — Returns the value of this Double as a double Chapter 7, Lesson 1

VAR-1.F.4 - Autoboxing is the automatic conversion that the Java compiler
makes between primitive types and their corresponding object wrapper
classes. This includes converting an int to an Integer and a double to a
Double.

Chapter 7, Lesson 1

VAR-1.F.5 - The Java compiler applies autoboxing when a primitive value is:
* Passed as a parameter to a method that expects an object of the
corresponding wrapper class.
* Assigned to a variable of the corresponding wrapper class.

Chapter 7, Lesson 1

VAR-1.F.6 - Unboxing is the automatic conversion that the Java compiler
makes from the wrapper class to the primitive type. This includes converting
an Integer to an int and a Double to a double.

Chapter 7, Lesson 1

VAR-1.F.7 - The Java compiler applies unboxing when a wrapper class object
is:
* Passed as a parameter to a method that expects a value of the
corresponding primitive type.
* Assigned to a variable of the corresponding primitive type.

Chapter 7, Lesson 1

TOPIC 2.9: Using the Math Class

MOD-1.H.1 - Static methods are called using the dot operator along with the
class name unless they are defined in the enclosing class.

Chapter 7, Lesson 3

CON-1.D.1 - The Math class is part of the java.lang package. Chapter 7, Lesson 3

CON-1.D.2 - The Math class contains only static methods. Chapter 7, Lesson 3

CON-1.D.3 - The following static Math methods—including what they do and
when they are used—are part of the Java Quick Reference:

See below

int abs(int x) — Returns the absolute value of an int value
Chapter 7, Lesson 3

double abs(double x) — Returns the absolute value of a double value
Chapter 7, Lesson 3

Copyright, CompuScholar, Inc.

https://www.compuscholar.com/schools/courses/java Page 7 of 18

double pow(double base, double exponent) — Returns the value of
the first parameter raised to the power of the second parameter Chapter 7, Lesson 3

double sqrt(double x) — Returns the positive square root of a double
value Chapter 7, Lesson 3

double random() — Returns a double value greater than or equal to
0.0 and less than 1.0 Chapter 7, Lesson 3

CON-1.D.4 - The values returned from Math.random can be manipulated to
produce a random int or double in a defined range.

Chapter 7, Lesson 3

UNIT 3: Boolean Expressions and if Statements CITATION(S)

TOPIC 3.1: Boolean Expressions

CON-1.E.1 - Primitive values and reference values can be compared using
relational operators (i.e., == and !=).

Chapter 8, Lesson 1
Chapter 9, Lesson 1

CON-1.E.2 - Arithmetic expression values can be compared using relational
operators (i.e., <, >, <=, >=).

Chapter 8, Lesson 1

CON-1.E.3 - An expression involving relational operators evaluates to a
Boolean value.

Chapter 8, Lesson 1

TOPIC 3.2: if Statements and Control Flow

CON-2.A.1 - Conditional statements interrupt the sequential execution of
statements.

Chapter 8, Lesson 2

CON-2.A.2 - if statements affect the flow of control by executing different
statements based on the value of a Boolean expression.

Chapter 8, Lesson 2

CON-2.A.3 - A one-way selection (if statement) is written when there is a set
of statements to execute under a certain condition. In this case, the body is
executed only when the Boolean condition is true.

Chapter 8, Lesson 2

TOPIC 3.3: if-else Statements

CON-2.A.4 - A two-way selection is written when there are two sets of
statements— one to be executed when the Boolean condition is true, and
another set for when the Boolean condition is false. In this case, the body of
the “if” is executed when the Boolean condition is true, and the body of the
“else” is executed when the Boolean condition is false.

Chapter 8, Lesson 3

TOPIC 3.4: elseif Statements

CON-2.A.5 - A multi-way selection is written when there are a series of
conditions with different statements for each condition. Multi-way selection
is performed using if-else-if statements such that exactly one section of code
is executed based on the first condition that evaluates to true.

Chapter 8, Lesson 3

TOPIC 3.5: Compound Boolean Expressions

CON-2.B.1 - Nested if statements consist of if statements within if statements. Chapter 8, Lesson 3

CON-1.F.1 - Logical operators !(not), &&(and), and ||(or) are used with
Boolean values. This represents the order these operators will be evaluated.

Chapter 9, Lesson 2

CON-1.F.2 - An expression involving logical operators evaluates to a Boolean
value.

Chapter 9, Lesson 2

Copyright, CompuScholar, Inc.

https://www.compuscholar.com/schools/courses/java Page 8 of 18

CON-1.F.3 - When the result of a logical expression using && or || can be
determined by evaluating only the first Boolean operand, the second is not
evaluated. This is known as short-circuited evaluation.

Chapter 9, Lesson 2

TOPIC 3.6: Equivalent Boolean Expressions

CON-1.G.1 - De Morgan’s Laws can be applied to Boolean expressions. Chapter 9, Lesson 3

CON-1.G.2 - Truth tables can be used to prove Boolean identities. Chapter 9, Lesson 3

CON-1.G.3 - Equivalent Boolean expressions will evaluate to the same value in
all cases.

Chapter 9, Lesson 3

TOPIC 3.7: Comparing Objects

CON-1.H.1 - Two object references are considered aliases when they both
reference the same object.

Chapter 9, Lesson 1

CON-1.H.2 - Object reference values can be compared, using == and !=, to
identify aliases.

Chapter 9, Lesson 1

CON-1.H.3 - A reference value can be compared with null, using == or !=, to
determine if the reference actually references an object.

Chapter 9, Lesson 1

CON-1.H.4 - Often classes have their own equals method, which can be used
to determine whether two objects of the class are equivalent.

Chapter 9, Lesson 1

UNIT 4: Iteration CITATION(S)

TOPIC 4.1: while Loops

CON-2.C.1 - Iteration statements change the flow of control by repeating a set
of statements zero or more times until a condition is met.

Chapter 12, Lesson 2

CON-2.C.2 - In loops, the Boolean expression is evaluated before each
iteration of the loop body, including the first. When the expression evaluates
to true, the loop body is executed. This continues until the expression
evaluates to false, whereupon the iteration ceases.

Chapter 12, Lesson 2

CON-2.C.3 - A loop is an infinite loop when the Boolean expression always
evaluates to true.

Chapter 12, Lesson 2

CON-2.C.4 - If the Boolean expression evaluates to false initially, the loop
body is not executed at all.

Chapter 12, Lesson 2

CON-2.C.5 - Executing a return statement inside an iteration statement will
halt the loop and exit the method or constructor.

Chapter 12, Lesson 3

CON-2.D.1- There are standard algorithms to:
* Identify if an integer is or is not evenly divisible by another integer
* Identify the individual digits in an integer
* Determine the frequency with which a specific criterion is met

Chapter 13, Lessons 3, 4

CON-2.D.2 - There are standard algorithms to:
* Determine a minimum or maximum value
* Compute a sum, average, or mode

Chapter 12, Lesson 1
Chapter 13, Lesson 3
Chapter 18, Lesson 4

Copyright, CompuScholar, Inc.

https://www.compuscholar.com/schools/courses/java Page 9 of 18

TOPIC 4.2: for Loops

CON-2.E.1 - There are three parts in a for loop header: the initialization, the
Boolean expression, and the increment. The increment statement can also be
a decrement statement.

Chapter 12, Lesson 1

CON-2.E.2 - In a for loop, the initialization statement is only executed once
before the first Boolean expression evaluation. The variable being initialized is
referred to as a loop control variable.

Chapter 12, Lesson 1

CON-2.E.3 - In each iteration of a for loop, the increment statement is
executed after the entire loop body is executed and before the Boolean
expression is evaluated again.

Chapter 12, Lesson 1

CON-2.E.4 - A for loop can be rewritten into an equivalent while loop and vice
versa.

Chapter 12, Lesson 2

CON-2.E.5 - “Off by one” errors occur when the iteration statement loops one
time too many or one time too few.

Chapter 12, Lesson 2

TOPIC 4.3: Developing Algorithms Using Strings

CON-2.F.1 - There are standard algorithms that utilize String traversals to:
* Find if one or more substrings has a particular property
* Determine the number of substrings that meet specific criteria
* Create a new string with the characters reversed

Chapter 13, Lesson 4

TOPIC 4.4: Nested Iteration

CON-2.G.1 - Nested iteration statements are iteration statements that appear
in the body of another iteration statement.

Chapter 12, Lesson 4

CON-2.G.2 - When a loop is nested inside another loop, the inner loop must
complete all its iterations before the outer loop can continue.

Chapter 12, Lesson 4

TOPIC 4.5: Informal Code Analysis

CON-2.H.1 - A statement execution count indicates the number of times a
statement is executed by the program.

Chapter 12, Lesson 1

UNIT 5: Writing Classes CITATION(S)

TOPIC 5.1: Anatomy of a Class

MOD-2.A.1 - The keywords public and private affect the access of classes,
data, constructors, and methods.

Chapter 14, Lesson 1

MOD-2.A.2 - The keyword private restricts access to the declaring class, while
the keyword public allows access from classes outside the declaring class.

Chapter 14, Lesson 1

MOD-2.A.3 - Classes are designated public. Chapter 14, Lesson 2

MOD-2.A.4 - Access to attributes should be kept internal to the class.
Therefore, instance variables are designated as private.

Chapter 14, Lesson 3

MOD-2.A.5 - Constructors are designated public. Chapter 14, Lesson 4

MOD-2.A.6 - Access to behaviors can be internal or external to the class.
Therefore, methods can be designated as either public or private.

Chapter 14, Lesson 5

Copyright, CompuScholar, Inc.

https://www.compuscholar.com/schools/courses/java Page 10 of 18

MOD-3.A.1 - Data encapsulation is a technique in which the implementation
details of a class are kept hidden from the user.

Chapter 14, Lessons 1, 3

MOD-3.A.2 - When designing a class, programmers make decisions about
what data to make accessible and modifiable from an external class. Data can
be either accessible or modifiable, or it can be both or neither.

Chapter 14, Lesson 3

MOD-3.A.3 - Instance variables are encapsulated by using the private access
modifier.

Chapter 14, Lesson 3

MOD-3.A.4 - The provided accessor and mutator methods in a class allow
client code to use and modify data.

Chapter 14, Lessons 3, 5

TOPIC 5.2: Constructors

MOD-2.B.1 - An object’s state refers to its attributes and their values at a
given time and is defined by instance variables belonging to the object. This
creates a “has-a” relationship between the object and its instance variables.

Chapter 14, Lesson 3

MOD-2.B.2 - Constructors are used to set the initial state of an object, which
should include initial values for all instance variables.

Chapter 14, Lesson 4

MOD-2.B.3 - Constructor parameters are local variables to the constructor
and provide data to initialize instance variables.

Chapter 14, Lesson 4

MOD-2.B.4 - When a mutable object is a constructor parameter, the instance
variable should be initialized with a copy of the referenced object. In this way,
the instance variable is not an alias of the original object, and methods are
prevented from modifying the state of the original object.

Chapter 14, Lesson 4

MOD-2.B.5 - When no constructor is written, Java provides a no-argument
constructor, and the instance variables are set to default values.

Chapter 14, Lesson 4

TOPIC 5.3: Documentation with Comments

MOD-2.C.1- Comments are ignored by the compiler and are not executed
when the program is run.

Chapter 15, Lesson 1

MOD-2.C.2 - Three types of comments in Java include /* */, which generates
a block of comments, //, which generates a comment on one line, and /** */,
which are Javadoc comments and are used to create API documentation.

Chapter 15, Lesson 1

MOD-2.C.3 - A precondition is a condition that must be true just prior to the
execution of a section of program code in order for the method to behave as
expected. There is no expectation that the method will check to ensure
preconditions are satisfied.

Chapter 15, Lesson 1

MOD-2.C.4 - A postcondition is a condition that must always be true after the
execution of a section of program code. Postconditions describe the outcome
of the execution in terms of what is being returned or the state of an object.

Chapter 15, Lesson 1

MOD-2.C.5 - Programmers write method code to satisfy the postconditions
when preconditions are met.

Chapter 15, Lesson 1

TOPIC 5.4: Accessor Methods

MOD-2.D.1 - An accessor method allows other objects to obtain the value of
instance variables or static variables.

Chapter 14, Lesson 5
Chapter 15, Lesson 3

MOD-2.D.2 - A non-void method returns a single value. Its header includes
the return type in place of the keyword void.

Chapter 14, Lesson 5
Chapter 15, Lesson 3

Copyright, CompuScholar, Inc.

https://www.compuscholar.com/schools/courses/java Page 11 of 18

MOD-2.D.3 - In non-void methods, a return expression compatible with the
return type is evaluated, and a copy of that value is returned. This is referred
to as “return by value.”

Chapter 14, Lesson 5Chapter
15, Lesson 3

MOD-2.D.4 - When the return expression is a reference to an object, a copy of
that reference is returned, not a copy of the object.

Chapter 15, Lesson 3

MOD-2.D.5 - The return keyword is used to return the flow of control to the
point immediately following where the method or constructor was called.

Chapter 15, Lesson 3

MOD-2.D.6 - The toString method is an overridden method that is included in
classes to provide a description of a specific object. It generally includes what
values are stored in the instance data of the object.

Chapter 15, Lesson 1

MOD-2.D.7 - If System.out.print or System.out.println is passed an object,
that object’s toString method is called, and the returned string is printed.

Chapter 15, Lesson 1

TOPIC 5.5: Mutator Methods

MOD-2.E.1 - A void method does not return a value. Its header contains the
keyword void before the method name.

Chapter 14, Lesson 5
Chapter 15, Lesson 3

MOD-2.E.2 - A mutator (modifier) method is often a void method that
changes the values of instance variables or static variables.

Chapter 14, Lesson 5
Chapter 15, Lesson 3

TOPIC 5.6: Writing Methods

MOD-2.F.1 - Methods can only access the private data and methods of a
parameter that is a reference to an object when the parameter is the same
type as the method’s enclosing class.

Chapter 15, Lesson 3

MOD-2.F.2 - Non-void methods with parameters receive values through
parameters, use those values, and return a computed value of the specified
type.

Chapter 14, Lesson 5

MOD-2.F.3 - It is good programming practice to not modify mutable objects
that are passed as parameters unless required in the specification.

Chapter 14, Lesson 5

MOD-2.F.4- When an actual parameter is a primitive value, the formal
parameter is initialized with a copy of that value. Changes to the formal
parameter have no effect on the corresponding actual parameter.

Chapter 14, Lesson 5

MOD-2.F.5 - When an actual parameter is a reference to an object, the formal
parameter is initialized with a copy of that reference, not a copy of the object.
If the reference is to a mutable object, the method or constructor can use this
reference to alter the state of the object.

Chapter 14, Lesson 5

MOD-2.F.6 - Passing a reference parameter results in the formal parameter
and the actual parameter being aliases. They both refer to the same object.

Chapter 14, Lesson 5

TOPIC 5.7: Static Variables and Methods

MOD-2.G.1 - Static methods are associated with the class, not objects of the
class.

Chapter 16, Lesson 2

MOD-2.G.2 - Static methods include the keyword static in the header before
the method name.

Chapter 16, Lesson 2

MOD-2.G.3 - Static methods cannot access or change the values of instance
variables.

Chapter 16, Lesson 2

MOD-2.G.4 - Static methods can access or change the values of static
variables.

Chapter 16, Lesson 2

Copyright, CompuScholar, Inc.

https://www.compuscholar.com/schools/courses/java Page 12 of 18

MOD-2.G.5 - Static methods do not have a this reference and are unable to
use the class’s instance variables or call non-static methods.

Chapter 16, Lessons 2, 3

MOD-2.H.1 - Static variables belong to the class, with all objects of a class
sharing a single static variable.

Chapter 16, Lesson 1

MOD-2.H.2 - Static variables can be designated as either public or private and
are designated with the static keyword before the variable type.

Chapter 16, Lesson 1

MOD-2.H.3 - Static variables are used with the class name and the dot
operator, since they are associated with a class, not objects of a class.

Chapter 16, Lesson 1

TOPIC 5.8: Scope and Access

VAR-1.G.1 - Local variables can be declared in the body of constructors and
methods. These variables may only be used within the constructor or method
and cannot be declared to be public or private.

Chapter 15, Lesson 2

VAR-1.G.2 - When there is a local variable with the same name as an instance
variable, the variable name will refer to the local variable instead of the
instance variable.

Chapter 15, Lesson 2

VAR-1.G.3 - Formal parameters and variables declared in a method or
constructor can only be used within that method or constructor.

Chapter 15, Lesson 2

VAR-1.G.4 - Through method decomposition, a programmer breaks down a
large problem into smaller subproblems by creating methods to solve each
individual subproblem.

Chapter 15, Lesson 1

TOPIC 5.9: this Keyword

VAR-1.H.1 - Within a non-static method or a constructor, the keyword this is a
reference to the current object—the object whose method or constructor is
being called.

Chapter 16, Lesson 3

VAR-1.H.2 - The keyword this can be used to pass the current object as an
actual parameter in a method call.

Chapter 16, Lesson 3

TOPIC 5.10: Ethical and Social Implications of Computing Systems

IOC-1.A.1 - System reliability is limited. Programmers should make an effort
to maximize system reliability.

Chapter 1, Lesson 4
Chapter 10

IOC-1.A.2 - Legal issues and intellectual property concerns arise when creating
programs.

Chapter 1, Lesson 4-5

IOC-1.A.3 - The creation of programs has impacts on society, economies, and
culture. These impacts can be beneficial and/or harmful.

Chapter 1, Lesson 4-5

UNIT 6: Array CITATION(S)

TOPIC 6.1: Array Creation and Access

VAR-2.A.1 - The use of array objects allows multiple related items to be
represented using a single variable.

Chapter 18, Lesson 1

VAR-2.A.2 - The size of an array is established at the time of creation and
cannot be changed.

Chapter 18, Lesson 1

VAR-2.A.3 - Arrays can store either primitive data or object reference data. Chapter 18, Lesson 1

Copyright, CompuScholar, Inc.

https://www.compuscholar.com/schools/courses/java Page 13 of 18

VAR-2.A.4 - When an array is created using the keyword new, all of its
elements are initialized with a specific value based on the type of elements:
* Elements of type int are initialized to 0
* Elements of type double are initialized to 0.0
* Elements of type boolean are initialized to false
* Elements of a reference type are initialized to the reference value null. No
objects are automatically created

Chapter 18, Lesson 1

VAR-2.A.5 - Initializer lists can be used to create and initialize arrays. Chapter 18, Lesson 1

VAR-2.A.6 - Square brackets ([]) are used to access and modify an element in
a 1D array using an index.

Chapter 18, Lesson 1

VAR-2.A.7 - The valid index values for an array are 0 through one less than the
number of elements in the array, inclusive. Using an index value outside of
this range will result in an ArrayIndexOutOfBoundsException being thrown.

Chapter 18, Lesson 1

TOPIC 6.2: Traversing Arrays

VAR-2.B.1 - Iteration statements can be used to access all the elements in an
array. This is called traversing the array.

Chapter 18, Lesson 2

VAR-2.B.2 - Traversing an array with an indexed for loop or while loop
requires elements to be accessed using their indices.

Chapter 18, Lesson 2

VAR-2.B.3 - Since the indices for an array start at 0 and end at the number of
elements − 1, “off by one” errors are easy to make when traversing an array,
resulting in an ArrayIndexOutOfBoundsException being thrown.

Chapter 18, Lesson 1

TOPIC 6.3: Enhanced forLoop for Arrays

VAR-2.C.1 - An enhanced for loop header includes a variable, referred to as
the enhanced for loop variable.

Chapter 18, Lesson 3

VAR-2.C.2 - For each iteration of the enhanced for loop, the enhanced for
loop variable is assigned a copy of an element without using its index.

Chapter 18, Lesson 3

VAR-2.C.3 - Assigning a new value to the enhanced for loop variable does not
change the value stored in the array.

Chapter 18, Lesson 3

VAR-2.C.4 - Program code written using an enhanced for loop to traverse and
access elements in an array can be rewritten using an indexed for loop or a
while loop.

Chapter 18, Lesson 3

TOPIC 6.4: Developing Algorithms Using Arrays

CON-2.I.1 - There are standard algorithms that utilize array traversals to:
* Determine a minimum or maximum value
* Compute a sum, average, or mode
* Determine if at least one element has a particular property
* Determine if all elements have a particular property
* Access all consecutive pairs of elements
* Determine the presence or absence of duplicate elements
* Determine the number of elements meeting specific criteria

Chapter 18, Lessons 4-5

CON-2.I.2 - There are standard array algorithms that utilize traversals to:
* Shift or rotate elements left or right
* Reverse the order of the elements

Chapter 18, Lessons 4-5

Copyright, CompuScholar, Inc.

https://www.compuscholar.com/schools/courses/java Page 14 of 18

UNIT 7: ArrayList CITATION(S)

TOPIC 7.1: Introduction to ArrayList

VAR-2.D.1 - An ArrayList object is mutable and contains object references. Chapter 19, Lesson 2

VAR-2.D.2 - The ArrayList constructor ArrayList() constructs an empty list. Chapter 19, Lesson 2

VAR-2.D.3 - Java allows the generic type ArrayList<E>, where the generic type
E specifies the type of the elements.

Chapter 19, Lesson 2

VAR-2.D.4 - When ArrayList<E> is specified, the types of the reference
parameters and return type when using the methods are type E.

Chapter 19, Lesson 2

VAR-2.D.5 - ArrayList<E> is preferred over ArrayList because it allows the
compiler to find errors that would otherwise be found at run-time.

Chapter 19, Lesson 2

TOPIC 7.2: ArrayList Methods

VAR-2.D.6 - The ArrayList class is part of the java.util package. An import
statement can be used to make this class available for use in the program.

Chapter 19, Lesson 2

VAR-2.D.7 - The following ArrayList methods—including what they do and
when they are used—are part of the Java Quick Reference:

See below

int size() - Returns the number of elements in the list
Chapter 19, Lesson 2

boolean add(E obj) - Appends obj to end of list; returns true
Chapter 19, Lesson 2

void add(int index, E obj) -Inserts obj at position index (0 <=index <=
size), moving elements at position index and higher to the right
(adds 1 to their indices) and adds 1 to size

Chapter 19, Lesson 2

E get(int index) - Returns the element at position index in the list
Chapter 19, Lesson 2

E set(int index, E obj) — Replaces the element at position index with
obj; returns the element formerly at position index Chapter 19, Lesson 2

E remove(int index) — Removes element from position index,
moving elements at position index + 1 and higher to the left
(subtracts 1 from their indices) and subtracts 1 from size; returns
the element formerly at position index

Chapter 19, Lesson 2

TOPIC 7.3: Traversing ArrayLists

VAR-2.E.1 - Iteration statements can be used to access all the elements in an
ArrayList. This is called traversing the ArrayList.

Chapter 19, Lesson 2

VAR-2.E.2 - Deleting elements during a traversal of an ArrayList requires using
special techniques to avoid skipping elements.

Chapter 19, Lesson 2

VAR-2.E.3 - Since the indices for an ArrayList start at 0 and end at the number
of elements − 1, accessing an index value outside of this range will result in
an ArrayIndexOutOfBoundsException being thrown.

Chapter 19, Lesson 2

VAR-2.E.4 - Changing the size of an ArrayList while traversing it using an
enhanced for loop can result in a ConcurrentModificationException being
thrown. Therefore, when using an enhanced for loop to traverse an ArrayList,
you should not add or remove elements.

Chapter 19, Lesson 3

Copyright, CompuScholar, Inc.

https://www.compuscholar.com/schools/courses/java Page 15 of 18

TOPIC 7.4: Developing Algorithms Using ArrayLists

CON-2.J.1 - There are standard ArrayList algorithms that utilize traversals to:
* Insert elements
* Delete elements
* Apply the same standard algorithms that are used with 1D arrays

Chapter 19, Lessons 3-4

CON-2.J.2 - Some algorithms require multiple String, array, or ArrayList
objects to be traversed simultaneously.

Chapter 19, Lesson 4

TOPIC 7.5: Searching

CON-2.K.1 - There are standard algorithms for searching. Chapter 20, Lesson 4

CON-2.K.2 - Sequential/linear search algorithms check each element in order
until the desired value is found or all elements in the array or ArrayList have
been checked.

Chapter 20, Lesson 4

TOPIC 7.6: Sorting

CON-2.L.1 - Selection sort and insertion sort are iterative sorting algorithms
that can be used to sort elements in an array or ArrayList.

Chapter 20, Lessons 2-3

CON-2.M.1 - Informal run-time comparisons of program code segments can
be made using statement execution counts.

Chapter 20, Lessons 1-3

TOPIC 7.7: Ethical Issues Around Data Collection

IOC-1.B.1 - When using the computer, personal privacy is at risk.
Programmers should attempt to safeguard personal privacy.

Chapter 1, Lesson 4
Suppl. Chapter 3, Lesson 1

IOC-1.B.2 - Computer use and the creation of programs have an impact on
personal security. These impacts can be beneficial and/or harmful.

Chapter 1, Lesson 4
Suppl. Chapter 3, Lesson 1

UNIT 8: 2D Array CITATION(S)

TOPIC 8.1: 2D Arrays

VAR-2.F.1 - 2D arrays are stored as arrays of arrays. Therefore, the way 2D
arrays are created and indexed is similar to 1D array objects.

Chapter 21, Lesson 3

VAR-2.F.2 - For the purposes of the exam, when accessing the element at
arr[first][second], the first index is used for rows, the second index is used for
columns.

Chapter 21, Lesson 1

VAR-2.F.3 - The initializer list used to create and initialize a 2D array consists
of initializer lists that represent 1D arrays.

Chapter 21, Lesson 3

VAR-2.F.4 - The square brackets [row][col] are used to access and modify an
element in a 2D array.

Chapter 21, Lesson 1

VAR-2.F.5 - “Row-major order” refers to an ordering of 2D array elements
where traversal occurs across each row, while “column-major order” traversal
occurs down each column.

Chapter 21, Lesson 2

Copyright, CompuScholar, Inc.

https://www.compuscholar.com/schools/courses/java Page 16 of 18

TOPIC 8.2: Traversing 2D Arrays

VAR-2.G.1 - Nested iteration statements are used to traverse and access all
elements in a 2D array. Since 2D arrays are stored as arrays of arrays, the way
2D arrays are traversed using for loops and enhanced for loops is similar to 1D
array objects.

Chapter 21, Lesson 2

VAR-2.G.2 - Nested iteration statements can be written to traverse the 2D
array in “row-major order” or “column-major order.”

Chapter 21, Lesson 2

VAR-2.G.3 - The outer loop of a nested enhanced for loop used to traverse a
2D array traverses the rows. Therefore, the enhanced for loop variable must
be the type of each row, which is a 1D array. The inner loop traverses a single
row. Therefore, the inner enhanced for loop variable must be the same type
as the elements stored in the 1D array.

Chapter 21, Lesson 2

CON-2.N.1 - When applying sequential/linear search algorithms to 2D arrays,
each row must be accessed then sequential/linear search applied to each row
of a 2D array.

Chapter 21, Lesson 4

CON-2.N.2 - All standard 1D array algorithms can be applied to 2D array
objects.

Chapter 21, Lesson 4

UNIT 9: Inheritance CITATION(S)

TOPIC 9.1: Creating Superclasses and Subclasses

MOD-3.B.1 - A class hierarchy can be developed by putting common
attributes and behaviors of related classes into a single class called a
superclass.

Chapter 22, Lesson 1

MOD-3.B.2 - Classes that extend a superclass, called subclasses, can draw
upon the existing attributes and behaviors of the superclass without
repeating these in the code.

Chapter 22, Lesson 1

MOD-3.B.3 - Extending a subclass from a superclass creates an “is-a”
relationship from the subclass to the superclass.

Chapter 22, Lesson 1

MOD-3.B.4 - The keyword extends is used to establish an inheritance
relationship between a subclass and a superclass. A class can extend only one
superclass.

Chapter 22, Lesson 1

TOPIC 9.2: Writing Constructors for Subclasses

MOD-3.B.5 - Constructors are not inherited. Chapter 22, Lesson 2

MOD-3.B.6 - The superclass constructor can be called from the first line of a
subclass constructor by using the keyword super and passing appropriate
parameters.

Chapter 22, Lesson 2

MOD-3.B.7 - The actual parameters passed in the call to the superclass
constructor provide values that the constructor can use to initialize the
object’s instance variables.

Chapter 22, Lesson 2

MOD-3.B.8 - When a subclass’s constructor does not explicitly call a
superclass’s constructor using super, Java inserts a call to the superclass’s no-
argument constructor.

Chapter 22, Lesson 2

Copyright, CompuScholar, Inc.

https://www.compuscholar.com/schools/courses/java Page 17 of 18

MOD-3.B.9 - Regardless of whether the superclass constructor is called
implicitly or explicitly, the process of calling superclass constructors continues
until the Object constructor is called. At this point, all of the constructors
within the hierarchy execute beginning with the Object constructor.

Chapter 22, Lesson 2

TOPIC 9.3: Overriding Methods

MOD-3.B.10 - Method overriding occurs when a public method in a subclass
has the same method signature as a public method in the superclass.

Chapter 23, Lesson 1

MOD-3.B.11 - Any method that is called must be defined within its own class
or its superclass.

Chapter 23, Lesson 1

MOD-3.B.12 - A subclass is usually designed to have modified (overridden) or
additional methods or instance variables.

Chapter 22, Lesson 1
Chapter 23, Lesson 1

MOD-3.B.13 - A subclass will inherit all public methods from the superclass;
these methods remain public in the subclass.

Chapter 23, Lesson 1

TOPIC 9.4: super Keyword

MOD-3.B.14 - The keyword super can be used to call a superclass’s
constructors and methods.

Chapter 22, Lesson 2
Chapter 23, Lesson 3

MOD-3.B.15 - The superclass method can be called in a subclass by using the
keyword super with the method name and passing appropriate parameters.

Chapter 23, Lesson 3

TOPIC 9.5: Creating References Using Inheritance Hierarchies

MOD-3.C.1 - When a class S “is-a” class T, T is referred to as a superclass, and
S is referred to as a subclass.

Chapter 23, Lesson 3

MOD-3.C.2 - If S is a subclass of T, then assigning an object of type S to a
reference of type T facilitates polymorphism.

Chapter 23, Lesson 3

MOD-3.C.3 - If S is a subclass of T, then a reference of type T can be used to
refer to an object of type Tor S.

Chapter 23, Lesson 3

MOD-3.C.4 - Declaring references of type T, when S is a subclass of T, is useful
in the following declarations:
* Formal method parameters
* arrays — T[]varArrayList<T>var

Chapter 23, Lesson 3

TOPIC 9.6: Polymorphism

MOD-3.D.1 - Utilize the Object class through inheritance. Chapter 23, Lesson 4

MOD-3.D.2 - At compile time, methods in or inherited by the declared type
determine the correctness of a non-static method call.

Chapter 23, Lesson 1

MOD-3.D.3 - At run-time, the method in the actual object type is executed for
a non-static method call.

Chapter 23, Lesson 1

TOPIC 9.7: Object Superclass

MOD-3.E.1 - The Object class is the superclass of all other classes in Java. Chapter 23, Lesson 4

MOD-3.E.2 - The Object class is part of the java.lang package. Chapter 23, Lesson 4

Copyright, CompuScholar, Inc.

https://www.compuscholar.com/schools/courses/java Page 18 of 18

MOD-3.E.3 - The following Object class methods and constructors—including
what they do and when they are used—are part of the Java Quick Reference:
* boolean equals(Object other)
* String toString()

Chapter 23, Lesson 4

MOD-3.E.4 - Subclasses of Object often override the equals and toString
methods with class-specific implementations.

Chapter 23, Lesson 4

UNIT 10: Recursion CITATION(S)

TOPIC 10.1: Recursion

CON-2.O.1 - A recursive method is a method that calls itself. Chapter 24, Lesson 1

CON-2.O.2 - Recursive methods contain at least one base case, which halts
the recursion, and at least one recursive call.

Chapter 24, Lesson 1

CON-2.O.3 - Each recursive call has its own set of local variables, including the
formal parameters.

Chapter 24, Lesson 1

CON-2.O.4 - Parameter values capture the progress of a recursive process,
much like loop control variable values capture the progress of a loop.

Chapter 24, Lesson 1

CON-2.O.5 - Any recursive solution can be replicated through the use of an
iterative approach.

Chapter 24, Lesson 1

CON-2.O.6 - Recursion can be used to traverse String, array, and ArrayList
objects.

Chapter 24, Lesson 1

TOPIC 10.2: Recursive Searching and Sorting

CON-2.P.1 - Data must be in sorted order to use the binary search algorithm. Chapter 24, Lesson 2

CON-2.P.2 - The binary search algorithm starts at the middle of a sorted array
or ArrayList and eliminates half of the array or ArrayList in each iteration until
the desired value is found or all elements have been eliminated.

Chapter 24, Lesson 2

CON-2.P.3 - Binary search can be more efficient than sequential/linear search. Chapter 24, Lesson 2

CON-2.P.4 - The binary search algorithm can be written either iteratively or
recursively.

Chapter 24, Lesson 2

CON-2.Q.1 - Merge sort is a recursive sorting algorithm that can be used to
sort elements in an array or ArrayList.

Chapter 24, Lesson 3

	Course Overview
	Textbook Resource
	Course Material
	Programming Environment and Device Requirements
	Project Grading
	Course Outline
	Course Navigation
	Course Planner
	Semester 1 Timeline
	Semester 2 Timeline
	“Big Ideas” and Student Activities
	Computational Thinking Practices

