
TeenCoderTM: Android Programming Chapter Activity
Copyright 2013, Homeschool Programming, Inc.

Chapter Thirteen, Activity #1: Weather App Widget

Updated May, 2015 to reflect new World Weather Online API version 2.

In this activity, we will expand our Weather Application from the last chapter to include an app widget that
can be placed on the home screen. The widget will show an image and information about the current weather.

Project Details

Your modified program will allow the user to select the Weather App as a home screen widget. The widget
display will show a brief summary of the current weather conditions.

In order to make your application available as a widget, you need to complete these general tasks:

• Create a layout XML file for your widget display.
• Create a widget definition XML file
• Update your “AndroidManifest.xml”
• Create an AppWidgetProvider class to implement your widget logic

How to Complete this Project – Widget Layout XML

To add a widget to your application, you will need to create a widget layout
XML file as described in the student textbook. Create an XML layout file called
“widget_layout.xml”. Your design should contain an ImageView control and
two TextView controls and should end up looking like the example to the right.

To give your widget a blue background (and ensure that the text is readable on any desktop wallpaper), add
the following attribute line to your opening <RelativeLayout> tag in your layout file:

 android:background="#94B6E7"

For questions or support, please see our website http://www.HomeschoolProgramming.com.

1

http://www.homeschoolprogramming.com/

TeenCoderTM: Android Programming Chapter Activity
Copyright 2013, Homeschool Programming, Inc.

How to Complete this Project – Widget Definition XML

You next need to create a widget definition XML file. Add the attributes described in the student textbook
within your <appwidget-provider> element. Specify a 30-minute update interval, a width and height to
consume 1 row and two columns in the home screen grid, and select your layout XML file created above.

How to Complete this Project – Update “AndroidManifest.xml”

In your “AndroidManifest.xml” file, add a <receiver> element that specifies the name of your widget class,
an <intent-filter> with the APPWIDGET_UPDATE <action>, and a <meta-data> element with the name
and resource for your widget XML definition file. We are going to call your widget class WeatherWidget.

How to Complete this Project – Create an AppWidgetProvider Class

You next need to create a class called WeatherWidget to implement your widget. This class should extend
the AppWidgetProvider class and should implement several major features.

First, create a getWeather() method in the WeatherWidget with this function definition:

private void getWeather(Context context, RemoteViews rv, int appWidgetId)

This method will be responsible for downloading the current weather information and updating the widget
controls with the image, current temperature, and description. To do this, add the following logic:

• Get the current location for this widget by calling Main.getLocation(), passing in the context
parameter only. This will ensure you share the currently configured location with the Main activity.

• Get an ArrayList<String> of weather information by calling Main.downloadWeather(), passing in
the context and location string.

• Make sure there is at least one result in the ArrayList to process. The first line (element 0) will
contain the current weather information, which is what we want to display! If there is at least one line
in the ArrayList:

o Create a new WeatherInfo object from the first line by calling
WeatherInfo.getCurrentWeatherInfo(), passing in the first ArrayList result variable.

o Get a Bitmap image by calling Main.downloadWeatherImage(), passing in the context
parameter and imageURL contained in the WeatherInfo object.

o If the returned Bitmap image is not null, store it in the ImageView you defined in your
layout XML by calling setImageViewBitmap() through the RemoteViews parameter.

o Update the first TextView in your layout XML through the RemoteViews to contain the
temperature from the WeatherInfo plus the character “F” to show it in Fahrenheit.

For questions or support, please see our website http://www.HomeschoolProgramming.com.

2

http://www.homeschoolprogramming.com/

TeenCoderTM: Android Programming Chapter Activity
Copyright 2013, Homeschool Programming, Inc.

o Update the second TextView in your layout XML through the RemoteViews to contain the
description from the WeatherInfo object.

Now that you have a handy getWeather() method that will update your widget’s display with current weather
information, where do you call it from? The onUpdate() method of course!

You next need to create an onUpdate() method that will be called every 30 minutes to update all widgets:

public void onUpdate(Context context, AppWidgetManager appWidgetManager,
 int[] appWidgetIds)
{
 super.onUpdate(context, appWidgetManager, appWidgetIds);
 // other logic here
}

For each widget, you want to install a PendingIntent that will launch the Main weather activity if the user
clicks on the image. You also want to update the widget’s display based on its configured location with new
weather information.

Underneath your call to super.onUpdate(), perform these steps:

• Loop through all of the appWidgetIds that were passed into this method. The user could have
more than one Weather widget on their home page!

• For each widget:
o Create an explicit Intent with the input context targeting the Main.class
o Create a PendingIntent with PendingIntent.getActivity() to hold your explicit Intent.
o Create a RemoteViews for the widget using the context’s package name and the widget’s

XML layout
o Set the PendingIntent into your ImageView object from the XML layout using the

RemoteViews
o Call your getWeather() method to update the weather information for that widget, passing in

the context, RemoteViews, and current appWidgetId.
o Call the AppWidgetManager’s updateAppWidget() method with your appWidgetId and

RemoteViews object.

For questions or support, please see our website http://www.HomeschoolProgramming.com.

3

http://www.homeschoolprogramming.com/

TeenCoderTM: Android Programming Chapter Activity
Copyright 2013, Homeschool Programming, Inc.

Project Output

When finished, after you run your application in the emulator, you should be able to exit the normal weather
app and return to the home screen. From there, choose the Applications button and select the “Widgets” tab
at the top of the screen. Scroll across and you should see your “Weather App” widget listed. Add it to your
home screen, and verify that it begins showing you accurate weather information for your current location.

If you click on the widget’s image, your Main activity should launch and show you the more detailed
information screen, including tomorrow and the next day’s data.

Note that your app widget will use the same configuration
information as the Main activity for now, and it only updates
every 30 minutes. So any configuration changes you make
after adding the widget will not take effect immediately.

You should be able to add a new widget to the home screen,
however, that will use the Main activity’s current
configuration right away.

For questions or support, please see our website http://www.HomeschoolProgramming.com.

4

http://www.homeschoolprogramming.com/

	Project Details
	How to Complete this Project – Widget Layout XML
	How to Complete this Project – Widget Definition XML
	How to Complete this Project – Update “AndroidManifest.xml”
	How to Complete this Project – Create an AppWidgetProvider Class
	Project Output

