
TeenCoderTM: Java Programming Chapter Two Bonus Lesson: JavaDoc

Copyright 2013 by Homeschool Programming, Inc. 1

Chapter Two Bonus Lesson: JavaDoc

We’ve already talked about adding simple comments to your source code. The JDK actually supports more
meaningful comments as well. If you add specially-formatted comments, you can then use a tool called
javadoc to automatically create HTML files, turning turn your simple comments into flashy documentation!

To use JavaDoc, you will create a specific type of comment just before each class, field and method in your
code. These comments will always begin with these characters: /** and end with these characters: */. The
text between these marks will contain text that describes the class, field or method in some detail. If you have
multiple lines of text in your JavaDoc comment, each line will start with an asterisk ‘*’. This asterisk character
and any whitespace before the first word in the line are ignored by the JavaDoc program when creating the
HTML output. In this example we have described our main HelloWorld class using several lines of text.

/** TeenCoder: Java Programming

 * Chapter 02

 * The HelloWorld class will print "Hello, World" to the console

*/
class HelloWorld

Since the text after the ‘*’ will be output directly to HTML, we ended each line with a “
”. In HTML
this marks the end of a line. You can use any HTML formatting you like within this block such as “” for
bold or “<i>” for italics if you know more about HTML. In this class we’ll simply use the
 marker at
the end of the line to ensure text is displayed on the HTML page the same way we see it in the source code.

JavaDoc Tags

Within a JavaDoc comment block you can add special tags that start with the symbol “@”. These tags will
hold specific pieces of information that the HTML output will treat differently. One common tag is
@author, which should be followed by a name. This tag will describe the author of the class. This tag is
typically used once, at the top of your source code.

@author name

The @version tag is useful when you are revising a piece of code. In this case, you want to be able to give an
indication that this is a newer version of the code. So, you can give it a version number, like 2.0 or 1.5 to
indicate the version of the code. This tag is typically only used once at the top of a source file, just like the
@author tag.

@version version

TeenCoderTM: Java Programming Chapter Two Bonus Lesson: JavaDoc

Copyright 2013 by Homeschool Programming, Inc. 2

One of the most commonly used JavaDoc tags is the @param tag. This tag is used to describe a method
parameter. We will discuss methods in further detail in a future lesson, but for now, you should understand
that a method is a block of code that can take certain parameters as data. You can think of the parameters as
the ingredients for the method. The @param tag will allow you to describe the name of the parameter and
the data that should be contained within the parameters.

@param name description

You can use one @param tag for each parameter in the method that you are describing. The @param tag is
followed by a name and a description. After any @param tags, the JavaDoc @return tag can be used to
describe the data that a method (or a block of code) will be returning to the calling program.

@return description

You will only need one @return tag for any method that returns a value.

We have only described the most commonly used JavaDoc tags. There are many other tags you can use to
increase the information available in your HTML output pages.

JavaDoc Comment Location

You must place your JavaDoc comments in particular spots, or they will be ignored. Your class-level
comments should go directly above your “class” keyword and below any import statements. Your function-
level comments should go directly above your function declaration.

import java.util.*; // any comments above your imports are ignored

/** class-level comments go here!
*/
class HelloWorld
{
 /** function-level comments go here!
 */
 public static void main(String args[]) // main entry point to the program
 {
 }
}

TeenCoderTM: Java Programming Chapter Two Bonus Lesson: JavaDoc

Copyright 2013 by Homeschool Programming, Inc. 3

JavaDoc Example

If we were to add some JavaDoc comments to our “HelloWorld” program, it could look something like this:

import java.util.*; // any comments above your imports are ignored

/** TeenCoder: Java Programming

 * Chapter 02

 * The HelloWorld class will print "Hello, World" to the console

 * @author Chris
 * @version 1.0 on March 30th, 2012
*/
class HelloWorld
{
 /**
 * The main function is run automatically when the program is started.
 * @param args The command-line arguments passed into the program
 */
 public static void main(String args[]) // main entry point to the program
 {
 System.out.println("Hello, World"); // a program statement!
 }
}

Let’s take a look at what we have done! First, notice that the top comment block is now enclosed in JavaDoc
markers /** and */. Each line within the block starts with an asterisk ‘*’. We have also added the @author
and @version tags to identify the programmer, version, and date.

Next we also added a JavaDoc comment in front of our main() function. The JavaDoc comment gives a
brief description of the main() function and also identifies the parameters into the function. Since there is no
data returned from the function, we have no @return tag.

Using the JavaDoc Tool

Once we have JavaDoc comments in the source file, we can run the javadoc program to create the HTML
output. Since the javadoc tool is part of the JDK like the javac compiler, you will run it from the command
line just like you did javac. In a Mac OS Terminal you can type “javadoc” and the tool will be found
automatically, but in a Windows Command Prompt you will use the fully qualified path to the JDK’s “bin”
directory.

TeenCoderTM: Java Programming Chapter Two Bonus Lesson: JavaDoc

Copyright 2013 by Homeschool Programming, Inc. 4

There are many parameters you can use to guide how JavaDoc produces output. Just run javadoc with no
parameters to see a complete list of options. The major ones we’ll use are:

-private This tells JavaDoc to include all classes in your program, not just the ones declared for
“public” use by other programmers.

-author This tells JavaDoc to use your @author tag to create an author section.
-version This tells JavaDoc to use your @version tag to create a version section.
-Xdoclint:none This tells JavaDoc to allow self-closing HTML tags such as
 in your comments –

only needed on JDK 8+.
-d <dir> This tells JavaDoc to send all of the HTML output files into the specified directory. If

you don’t use this, the JavaDoc will be dumped right into your root source file directory,
which can be confusing.

<source file> At the end of all the other parameters, simply specify your source file name such as
“HelloWorld.java”

On Windows we would run javadoc as shown below. Keep in mind your actual JDK version may be
different, and the –Xdoclint:none parameter is only needed on JDK8 installations.

The same example on Mac OS looks like this:

Once you run the javadoc program, you will see a bunch of output as individual HTML files are created.

TeenCoderTM: Java Programming Chapter Two Bonus Lesson: JavaDoc

Copyright 2013 by Homeschool Programming, Inc. 5

Or you may see descriptive error messages if it found something in your comments that did not meet the
JavaDoc standard. Notice we specified “doc” as our output directory, so after the program runs we will have
a new “doc” subdirectory underneath the “HelloWorld” directory. The image below shows an example list of
the output files in the “doc” directory as seen in Windows Explorer (details may vary):

That’s quite a lot of files to document one simple class! But you can simply pull up the “index.html” page in
your favorite web browser to see the documentation for your program (no Internet connection required).

TeenCoderTM: Java Programming Chapter Two Bonus Lesson: JavaDoc

Copyright 2013 by Homeschool Programming, Inc. 6

Here’s what our “index.html” page looks like in a typical web browser:

The top part shows our “HelloWorld” class description, author, and version. Notice the overall framework is
pretty fancy and can handle multiple classes listed on the left side, and has a number of tabs across the top as
well. While this may be overkill for one simple class, if you are documenting many classes such as the Java
class library, all the extra organization really comes in handy.

TeenCoderTM: Java Programming Chapter Two Bonus Lesson: JavaDoc

Copyright 2013 by Homeschool Programming, Inc. 7

If you scroll down on the
HTML page you will see
additional information.

We haven’t talked about
“constructors” yet so you can
ignore those sections, but
notice that your main()
function is clearly described
and has a hyperlink that will
take you right to the full
definition.

Finally if you keep scrolling
towards the bottom you will
find the documentation for
each of your individual class
functions. In our case we
have only one function,
main(), which appears with
it’s descriptive method text
and parameter description.

As you can see, JavaDoc is a very powerful tool that can produce complete documentation on your program,
all for the price of a few specially formatted comments in your code. Following the JavaDoc standard is
especially important when you are writing classes that you expect other programmers to understand and use.

	JavaDoc Tags
	JavaDoc Comment Location
	JavaDoc Example
	Using the JavaDoc Tool

