
“AP® Computer Science A” Syllabus College Board Approved
 “Claim Identical” #2622228v3

AP
®

Computer Science A

Syllabus

July, 2020

Course Overview

This AP Computer Science A class uses the CompuScholar Java Programming (AP) curriculum
as the primary resource. It is taught as a one-year (two-semester) sequence and covers all required
topics in the “Computer Science A” Course Description published by the College Board at
https://apcentral.collegeboard.org/pdf/ap-computer-science-a-course-and-exam-description.pdf.

Students need to have typical computer usage skills prior to starting this course; other introductory
programming courses are not required. All programming concepts are taught from the ground up in
a fun, step-by-step manner. The course includes uses a variety of multi-media content such as full-
color text, animated / narrated instructional videos, and guided classroom discussions. Strong
emphasis is placed on hands-on programming labs to demonstrate mastery of lesson concepts.

Text and Resources

[1] Java Programming (AP), CompuScholar, Inc. 2019, ISBN 9780988707023

https://www.compuscholar.com/schools/courses/ap-java/

Teaching Strategies

The course material is designed to appeal to a variety of students, from traditional learners who
thrive on written text to audio-visual students who enjoy a multi-media format. All content is
delivered through an online system that allows students to work seamlessly both in the classroom
and at home.

The course integrates the standard 5E instructional model: engage with familiar, real-world examples,
explore with integrated multi-media lessons, explain with guided classroom discussions, elaborate with
hands-on activities to apply concepts, and evaluate with automated lesson quizzes and chapter tests.
Each lesson contains a combination of text, video, and guided classroom discussions. Students can
seamlessly shift between instructional videos and lesson text to suit their learning styles. Fun, hands-
on programming labs allow students to quickly see concrete results.

https://apcentral.collegeboard.org/pdf/ap-computer-science-a-course-and-exam-description.pdf
https://www.compuscholar.com/schools/courses/ap-java/

“AP® Computer Science A” Syllabus

 Page 2 of 10

Labs and Programming Environment

Each of the 25+ chapters in the Java Programming (AP) course contains one or more hands-on
programming labs where students will design or implement programs to demonstrate understanding
of the lesson topics. Combined, these labs easily exceed the 20 hour minimum lab requirement.
Students will get the opportunity to work on individual and group projects and will experience all
phases of a project lifecycle, including requirements, design, implementation, and testing. Students
are exposed to the three new College Board labs (Magpie, Picture Lab, Elevens) in addition to the
curriculum labs.

The recommended Java programming IDE is “Eclipse” (www.eclipse.org). This free, open-source
software is widely used throughout academic and professional environments. The Java
Programming (AP) course contains detailed installation instructions for use in school labs or at
home. Students may use alternate IDEs of desired.

Cross-Reference Tables for AP Exam Topics

The first part of this syllabus contains a Course Planner showing the week-by-week progression
through the primary resource and labs.

For a detailed, point-by-point cross reference of every required AP exam
topic and Java subset feature to specific lessons in the primary resource,
please see the 18-page table titled “Alignment to the College Board AP
Computer Science A Standards” appended to the end of this document.

That cross-reference table is also available online, for convenience, at the following link:

https://www.compuscholar.com/docs/java/AP_Exam_Cross_Reference.pdf

http://www.eclipse.org/
https://www.compuscholar.com/docs/java/AP_Exam_Cross_Reference.pdf

“AP® Computer Science A” Syllabus

 Page 3 of 10

Course Planner

All readings, unless otherwise noted, are from [1] Java Programming (AP). Each chapter contains
multiple lesson quizzes and a chapter test in addition to the listed Lab assignments.

A school year consists of 180 days or 36 weeks. The planner covers all required exam topics prior to
the administration of the AP exam in May, including a number of weeks for review and practice
tests.

Week Reading and Objectives Labs

1 Chapter One: Understanding Computer Programming

• A Survey of Computer Hardware
• Introduction to Computer Software
• Common Programming Languages
• Computer Ethics and Security (ethics,

copyrights, intellectual property, piracy,
software license agreements, firewalls, anti-
virus programs, passwords)

Establish Development
Environment - Install JDK,
create working directory, practice
submitting projects through the
online interface.

Class discussion and review of a
sample EULA terms and
conditions.

2 Chapter Two: Getting Started with Java

• The Java Platform
• Writing Your First Program
• Building and Running from the Command

Line
• Java Classes and Packages

Show Time! – The student’s first
Java program will print the current
time to the console. The student
will compile and run the program
from the command line (without
an IDE).

“AP® Computer Science A” Syllabus

 Page 4 of 10

Week Reading and Objectives Labs

3 Chapter Three: The Eclipse IDE

• Introducing Eclipse
• Eclipse Java IDE Walk-through
• Creating an Eclipse Project
• Help and Reference Documentation

Install Eclipse IDE – If not
already installed, the student will
add the Eclipse IDE to their
home or school computer.

Eclipse Show Time Project –
The student will recreate the same
Show Time project using the
Eclipse IDE to write, build, and
run the program.

4 Chapter Four: Data Types and Variables

• Primitive Data Types
• Variables
• Printing Data

Experiment with Data Types –
The student will demonstrate
declaring, initializing, and printing
variables of different data types.

5-6 Chapter Five: Working With Strings

• Reference Data Types
• Comparing Strings
• Common String Operations
• Formatting and Building Strings
• Converting Between Strings and Numbers

String Theory – The student will
create multiple strings and
perform a variety of operations on
them, including comparison,
substrings, formatting, parsing,
and case conversion.

7 Chapter Six: User Input

• Using Command-Line Parameters
• Interactive User Input
• Validating User Input

Conversation Piece – The
student will create a program
using a command-line Scanner to
obtain a variety of user input, and
then format that input into an
output story.

“AP® Computer Science A” Syllabus

 Page 5 of 10

Week Reading and Objectives Labs

8 Chapter Seven: Basic Flow Control

• Logical Expressions and Relational Operators
• Using the "if" Statement
• The "switch" Statement
• For Loops
• While Loops

Fun Factorials – The student will
demonstrate use of a for() loop,
while() loop, and do-while() loop
to calculate factorials of an input
number. Boundary conditions
involving maximum integer sizes
are explored and tested.

9 Chapter Eight: Writing Methods

• Writing and Calling Methods
• Method Parameters and Return Values
• Calling Methods

Checkerboard – The student will
write a program that includes a
new function to print a
checkerboard pattern to the
screen given input row and
column size parameters.

10 Chapter Nine: Debugging and Exceptions

• Logic Errors, Runtime Errors and Exceptions
• Catching Exceptions
• Finding Runtime Errors
• The Eclipse Debugger

Bug Hunt – The student is
presented with a program that
contains a number of bugs. The
student will use the Eclipse
debugger and troubleshooting
skills to identify and resolve each
issue.

11 Chapter Ten: Introduction to OOP

• Object-Oriented Concepts
• Defining a Class
• Public, Private, Protected Classes

Dog House – The student will
create a simple set of interacting
classes.

“AP® Computer Science A” Syllabus

 Page 6 of 10

Week Reading and Objectives Labs

12 Chapter Eleven: Objects in Java

• Constructors
• Object Interfaces
• Static Members

Let's Go Racing! – The student
will create a RaceCar object and
an IRacer object. Multiple
RaceCar instances will be added to
a provided RaceTrack object that
knows how to run races through
the IRacer interface.

13 Chapter Twelve: Graphical Java Programs

• Java Swing
• Creating a Simple Window
• Event-Driven Programming
• Layout Managers

Phone Dialer – The student’s
first Java Swing program will
show a simple phone keypad and
allow users to enter a phone
number for display.

14 Chapter Thirteen: Swing Input Controls

• Text and Numeric Input
• List Input
• Option Input

Pizza Place – The student will
create a pizza ordering screen to
demonstrate proper use of many
common UI widgets (check
boxes, radio buttons, list boxes,
etc).

15-16 Chapter Fourteen: Arrays and Collections

• 1D Arrays
• 2D Arrays
• Java Lists
• ArrayLists
• Iterators and the Enhanced for() Loop

Gold Rush – The student will
write algorithms to populate and
traverse a data structure that
combines 2D arrays and
ArrayLists.

“AP® Computer Science A” Syllabus

 Page 7 of 10

Week Reading and Objectives Labs

17-18 Chapter Fifteen: Inheritance and Polymorphism

• Learn about the “Jail Break!” game.
• Base Classes and Derived Classes
• Using References to Base and Derived Classes
• Overriding Base Methods
• The "Object" Base Class
• Using Base Features from Derived Classes

Game Pieces – The student will
create three derived classes
(Deputy, Henchman, Kingpin)
from an abstract base, in
preparation for using these classes
in the mid-term project. The
classes are tested to ensure they
meet the requirements using a
provided test class.

19-20 Chapter Sixteen: Jail Break Project

For the mid-term project the student will complete a
game called “Jail Break” that is based on an old Viking
board game. The student will create the abstract
hierarchy of pieces (AbstractGamePiece, Deputy,
Henchman, Kingpin) and write other logic to
complete the game. The project consists of 6 guided
lab steps that involve creating new classes, modifying
existing code, and integrating with provided starter
objects. Each guided step contains a checkpoint for
testing to ensure code meets the requirements at each
step.

Key concepts demonstrated include:

• Encapsulation
• Inheritance
• Polymorphism
• Modeling real-world activities
• Integrating new and existing classes

Building the Activity Starter –
Ensure the student can find and
build the starter project.

Completing JailBreak.reset() –
Write logic to initialize the game
board with pieces in the starting
position.

Selecting Game Pieces – Write
game logic to allow selection and
de-selection of game pieces.

Moving Game Pieces – Write
game logic (including virtual
method overrides) to control
game piece movement.

Capturing Game Pieces – Write
game logic to control game piece
capturing.

Ending the Game – Complete
the end-of-game logic.

“AP® Computer Science A” Syllabus

 Page 8 of 10

Week Reading and Objectives Labs

21 Chapter Seventeen: Math Functions in Java

• Java Math Functions
• The Binary Number System
• Creating a MathFactory demonstration
• Common Algorithms

MathFactory Activity – The
student will expand the
MathFactory lab to include
decimal-to-binary conversion.

Algorithm Practice – The
student will create two simple
algorithms based on a problem
description.

22 Chapter Eighteen: File Access

• Data Streams
• Reading and Writing Text Data
• Reading and Writing Binary Data

Address CSV – The student will
write a program to convert a list
of Address structures to a CSV
file on disk, and then read that file
back in again and re-populate the
address list.

23 Chapter Nineteen: Sorting, Searching and Recursion

• Recursion
• Sorting Algorithms (Bubble, Selection,

Insertion, Merge)
• Searching Algorithms (Sequential, Binary)

Recursive Binary Search – The
student will write a binary search
function to locate a number in a
pre-sorted array.

24 Chapter Twenty: Program Efficiency

• More Common Algorithms
• Algorithm Performance (Big-O)
• Measuring Sorting Efficiency

Comparison of Sorting
Algorithms – The student will
implement timing and data-
generation algorithms and
measure the performance of 4
different sort routines with
various numbers of elements.

25 Chapter Twenty-One: Vector and Bitmap Images

• Screen Coordinates
• Drawing Shapes
• Drawing Images

Sky Art – The student will use
recursion, vector graphics, and
image graphics to generate a
randomized cloudy sky scene.

“AP® Computer Science A” Syllabus

 Page 9 of 10

Week Reading and Objectives Labs

26 Chapter Twenty-Two: Object Composition and
Copying

• Functional Decomposition
• Composite Classes
• Copying objects

Designing a Composite Class -
In this lab the student will design
a composite class based around a
Computer object. The output is a
diagram instead of a program.

27 Chapter Twenty-Three: Computer Networking

• Basic Networking
• Network Topology
• Network Addressing

Animal Palace – Students will
use online tools to find images
and store in a shared directory and
class web page.

28 Chapter Twenty-Four: Software Engineering
Principles

• Design Processes and Teamwork
• Java Doc
• Testing Your Code

Creating JavaDoc HTML – The
student will add JavaDoc
comments to an earlier lab project
and generate HTML output using
the javadoc tool.

29-30 Chapter Twenty-Six: College Board Supplemental
Labs

This chapter gives students a chance to complete
many activities in the College Board AP supplemental
labs, including:

• Magpie
• Picture Lab
• Elevens

Magpie Chatbot – Guided lab
involving string parsing and
manipulation.

Picture Lab - Guided lab using
2D arrays in the context of image
processing.

Elevens - Guided lab through
object-oriented design concepts
with a simple card game.

“AP® Computer Science A” Syllabus

 Page 10 of 10

Week Reading and Objectives Labs

 Chapter Twenty-Seven: GridWorld Case Study

The older GridWorld case study is available for
students who wish to pursue extra exercises on their
own, but it is not required for the AP exam.

• Introducing GridWorld
• Bug Variations
• GridWorld Classes and Interfaces
• Interacting Objects

Bug Variations

GridWorld Classes and
Interfaces

Interacting Objects

31-32 AP EXAM – PRACTICE TESTS, REVIEW, MAKE-
UP WORK

Flexible time used to review and
practice for the AP exam.

33 AP EXAM – EARLY MAY

34-36 Chapter Twenty-Five: Team Project

The final project can be completed after the AP exam
and the timeline scaled to fit available time. Student-
driven labs will cover each phase of the software
lifecycle.

• Project Requirements
• Project Design
• Project Implementation
• Project Testing

Team Project Requirements –
Student teams will define their
final project requirements.

Project Design – Student teams
will design their final projects.

Team Project Implementation
– Student teams will code their
final project.

Team Project Testing – Student
teams will test their final project.

Copyright, CompuScholar, Inc.

Page 1 of 18

Course Title:
Grade Level: 9th - 12th grades
Standards Version: Fall 2019
Standards Link:

Course Title:
Course ISBN: 978-0-9887070-2-3
Course Year: 2019

AP Course Description

AP Lab Requirements

CITATION(S)

See "Work with Me" sections
within lessons and "Chapter
Activities" in each chapter.

Chapter 26, Lesson 1

Chapter 26, Lesson 2

Chapter 26, Lesson 3

Chapter 27

9th - 12th grades

CompuScholar, Inc.

Alignment to the College Board AP Computer Science A Standards

AP Course Details:
AP Computer Science A

ap-computer-science-a-course-and-exam-description.pdf

CompuScholar Course Details:
Java Programming (AP)

Note 1: Citation(s) listed may represent a subset of the instances where objectives are met throughout the
course.

Note 2: Citation(s) for a "Lesson" refer to the "Lesson Text" elements and associated "Activities" within the
course, unless otherwise noted. The "Instructional Video" components are supplements designed to introduce
or re-enforce the main lesson concepts, and the Lesson Text contains full details.

GridWorld Case Study (no longer required, but available for use if desired)

This course teaches students the fundamentals of the Java programming language and covers all required topics
defined by the College Board's AP Computer Science A course description.

The AP Computer Science A course must include a minimum of 20 hours of
hands-on structured-lab experiences to engage students in individual or
group problem solving.

Magpie Lab (recommended starting in 2014-2015)

Picture Lab (recommended starting in 2014-2015)

Elevens Lab (recommended starting in 2014-2015)

This course easily meets and exceeds the 20-hour minimum lab requirement
with hands-on lesson exercises and chapter activities. In addition, coverage
and time for the new example labs is provided for teachers to use as needed.

https://apcentral.collegeboard.org/pdf/ap-computer-science-a-course-and-exam-description.pdf

Copyright, CompuScholar, Inc.

Page 2 of 18

AP Topic Outline

CITATION(S)

Chapter 2, Lesson 2
Chapter 4, Lesson 3

Chapter 4, Lesson 3

Chapter 4, Lesson 1

Chapter 4, Lesson 1
Chapter 5, Lesson 2
Chapter 4, Lesson 1
Chapter 4, Lesson 2
Chapter 4, Lesson 1
Chapter 4, Lesson 2
Chapter 4, Lesson 1
Chapter 4, Lesson 2
Chapter 4, Lesson 1
Chapter 4, Lesson 2

Chapter 4, Lesson 2

Chapter 4, Lesson 2

Chapter 4, Lesson 2

Chapter 4, Lesson 2

Chapter 4, Lesson 2

Chapter 4, Lesson 2

Chapter 4, Lesson 2
Chapter 7, Lesson 1

Chapter 7, Lesson 1

Chapter 9, Lesson 1

Chapter 4, Lesson 2

Topic 1.1: Why Programming? Why Java?

VAR-1.B.3 - The primitive data types used in this course define the set of
operations for numbers and Boolean values.
VAR-1.C.1 - The three primitive data types used in this course are int, double,
and boolean.

UNIT 1: Primitive Types

MOD-1.A.1 - System.out.print and System.out.println display information on
the computer monitor.
MOD-1.A.2 - System.out.println moves the cursor to a new line after the
information has been displayed, while System.out.print does not.

VAR-1.C.2 - Each variable has associated memory that is used to hold its
value.

VAR-1.B.1 - A type is a set of values (a domain) and a set of operations on
them.

VAR-1.B.2 - Data types can be categorized as either primitive or reference.

VAR-1.C.3 - The memory associated with a variable of a primitive type holds
an actual primitive value.
VAR-1.C.4 - When a variable is declared final, its value cannot be changed
once it is initialized.

TOPIC 1.2: Variables and Data Types

TOPIC 1.3: Expressions and Assignment Statements

CON-1.B.1 - The assignment operator (=) allows a program to initialize or
change the value stored in a variable. The value of the expression on the
right is stored in the variable on the left.

CON-1.A.1 - A literal is the source code representation of a fixed value

CON-1.A.2 - Arithmetic expressions include expressions of type int and
double.

CON-1.A.3 - The arithmetic operators consist of +, −, *, /, and %

CON-1.A.4 - An arithmetic operation that uses two int values will evaluate to
an int value.
CON-1.A.5 - An arithmetic operation that uses a double value will evaluate to
a double value.

CON-1.A.6 - Operators can be used to construct compound expressions.

CON-1.A.7 - During evaluation, operands are associated with operators
according to operator precedence to determine how they are grouped.
CON-1.A.8 - An attempt to divide an integer by zero will result in an
ArithmeticException to occur.

Copyright, CompuScholar, Inc.

Page 3 of 18

Chapter 4, Lesson 2
Chapter 7, Lesson 1
Chapter 4, Lesson 2
Chapter 7, Lesson 1

Chapter 4, Lesson 2

Chapter 4, Lesson 2

Chapter 4, Lesson 2

Chapter 4, Lesson 2

Chapter 4, Lesson 2

Chapter 4, Lesson 2

Chapter 4, Lesson 2

Chapter 17, Lesson 2

CITATION(S)

Chapter 10, Lessons 1-2

Chapter 10, Lessons 1-2

Chapter 11, Lesson 1

Chapter 11, Lesson 1

Chapter 11, Lesson 1

Chapter 11, Lesson 1

TOPIC 2.1: Objects: Instances of Classes

UNIT 2: Using Objects

CON-1.B.2 - During execution, expressions are evaluated to produce a single
value.
CON-1.B.3 - The value of an expression has a type based on the evaluation of
the expression.

CON-1.C.6 - If an expression would evaluate to an int value outside of the
allowed range, an integer overflow occurs. This could result in an incorrect
value within the allowed range.

CON-1.B.4 - Compound assignment operators (+=, −=, *=, /=, %=) can be used
in place of the assignment operator.
CON-1.B.5 - The increment operator (++) and decrement operator (−−) are
used to add 1 or subtract 1 from the stored value of a variable or an array
element. The new value is assigned to the variable or array element.

CON-1.C.1 - The casting operators (int) and (double) can be used to create a
temporary value converted to a different data type.
CON-1.C.2 - Casting a double value to an int causes the digits to the right of
the decimal point to be truncated.
CON-1.C.3 - Some programming code causes int values to be automatically
cast (widened) to double values.

TOPIC 1.5: Casting and Ranges of Variables

TOPIC 1.4: Compound Assignment Operators

CON-1.C.4 - Values of type double can be rounded to the nearest integer by
(int)(x + 0.5) or (int)(x – 0.5) for negative numbers.
CON-1.C.5 - Integer values in Java are represented by values of type int,
which are stored using a finite amount (4 bytes) of memory. Therefore, an
int value must be in the range from Integer.MIN_VALUE to
Integer.MAX_VALUE inclusive.

MOD-1.B.1 - An object is a specific instance of a class with defined attributes.

MOD-1.B.2 A class is the formal implementation, or blueprint, of the
attributes and behaviors of an object.

MOD-1.C.1 - A signature consists of the constructor name and the parameter
list.
MOD-1.C.2 - The parameter list, in the header of a constructor, lists the types
of the values that are passed and their variable names. These are often
referred to as formal parameters.
MOD-1.C.3 - A parameter is a value that is passed into a constructor. These
are often referred to as actual parameters.
MOD-1.C.4 - Constructors are said to be overloaded when there are multiple
constructors with the same name but a different signature.

TOPIC 2.2: Creating and Storing Objects (Instantiation)

Copyright, CompuScholar, Inc.

Page 4 of 18

Chapter 11, Lesson 1

Chapter 8, Lesson 3

Chapter 10, Lesson 2
Chapter 11, Lesson 1

Chapter 11, Lesson 1

Chapter 5
Chapter 17, Lesson 1

Chapter 11, Lesson 1

Chapter 5, Lesson 1

Chapter 5, Lesson 1

Chapter 10, Lessons 1-2

Chapter 10, Lessons 1-2

Chapter 8, Lesson 1

Chapter 8, Lesson 1

Chapter 10, Lesson 2

Chapter 10, Lesson 2

Chapter 8, Lesson 1

Chapter 9, Lesson 1

Chapter 8, Lessons 2-3

Chapter 8, Lessons 2-3

MOD-1.D.1 - Every object is created using the keyword new followed by a
call to one of the class’s constructors.
MOD-1.D.2 - A class contains constructors that are invoked to create objects.
They have the same name as the class.
MOD-1.D.3 - Existing classes and class libraries can be utilized as appropriate
to create objects.
MOD-1.D.4 - Parameters allow values to be passed to the constructor to
establish the initial state of the object.

MOD-1.C.6 - Parameters are passed using call by value. Call by value
initializes the formal parameters with copies of the actual parameters.

MOD-1.C.5 - The actual parameters passed to a constructor must be
compatible with the types identified in the formal parameter list.

MOD-1.E.7 - Void methods do not have return values and are therefore not
called as part of an expression.
MOD-1.E.8 - Using a null reference to call a method or access an instance
variable causes a NullPointerException to be thrown.

VAR-1.D.1 - The keyword null is a special value used to indicate that a
reference is not associated with any object.
VAR-1.D.2 - The memory associated with a variable of a reference type holds
an object reference value or, if there is no object, null. This value is the
memory address of the referenced object.

MOD-1.E.1 - An object’s behavior refers to what the object can do (or what
can be done to it) and is defined by methods.
MOD-1.E.2 - Procedural abstraction allows a programmer to use a method by
knowing what the method does even if they do not know how the method
was written.

MOD-1.E.4 - A method or constructor call interrupts the sequential execution
of statements, causing the program to first execute the statements in the
method or constructor before continuing. Once the last statement in the
method or constructor has executed or a return statement is executed, flow
of control is returned to the point immediately following where the method
or constructor was called

MOD-1.E.5 - Non-static methods are called through objects of the class.

MOD-1.E.6 - The dot operator is used along with the object name to call non-
static methods.

TOPIC 2.3: Calling a Void Method

TOPIC 2.4: Calling a Void Method with Parameters
MOD-1.F.1 - A method signature for a method with parameters consists of
the method name and the ordered list of parameter types.

MOD-1.E.3 - A method signature for a method without parameters consists
of the method name and an empty parameter list.

MOD-1.F.2 - Values provided in the parameter list need to correspond to the
order and type in the method signature.

Copyright, CompuScholar, Inc.

Page 5 of 18

Chapter 8, Lessons 2-3

Chapter 8, Lessons 2-3

Chapter 5, Lesson 1

Chapter 5, Lessons 1-2

Chapter 5, Lesson 4

Chapter 5, Lessons 4-5

Chapter 4, Lesson 3

Chapter 2, Lesson 4
Chapter 17, Lesson 1

Chapter 24, Lesson 2

Chapter 2, Lesson 4

Chapter 5, Lesson 1

Chapter 5, Lesson 3

Chapter 5, Lesson 4

See Below

Chapter 5, Lesson 1

Chapter 5, Lesson 3

Chapter 5, Lesson 3

Chapter 5, Lesson 3

Chapter 5, Lesson 3

Chapter 5, Lesson 3

VAR-1.E.9 - The String class is part of the java.lang package. Classes in the
java.lang package are available by default.
VAR-1.E.10 - A String object has index values from 0 to length– 1. Attempting
to access indices outside this range will result in an
IndexOutOfBoundsException.

MOD-1.F.3 - Methods are said to be overloaded when there are multiple
methods with the same name but a different signature.

MOD-1.G.1 Non-void methods return a value that is the same type as the
return type in the signature. To use the return value when calling a non-void
method, it must be stored in a variable or used as part of an expression.

VAR-1.E.1 - String objects can be created by using string literals or by calling
the String class constructor.
VAR-1.E.2 - String objects are immutable, meaning that String methods do
not change the String object.
VAR-1.E.3 - String objects can be concatenated using the + or += operator,
resulting in a new String object.

VAR-1.E.6 - Application program interfaces (APIs) and libraries simplify
complex programming tasks

VAR-1.E.4 - Primitive values can be concatenated with a String object. This
causes implicit conversion of the values to String objects.
VAR-1.E.5 - Escape sequences start with a \ and have a special meaning in
Java. Escape sequences used in this course include \”, \\, and \n.

TOPIC 2.5: Calling a Non-void Method

TOPIC 2.6: String Objects: Concatenation, Literals, and More

TOPIC 2.7: String Methods

VAR-1.E.12 - The following String methods and constructors—including what
they do and when they are used—are part of the Java Quick Reference:

String(String str) — Constructs a new String object that represents the
same sequence of characters as str
int length() — Returns the number of characters in a String object

int indexOf(String str) — Returns the index of the first occurrence of
str; returns -1 if not found

VAR-1.E.11 - A String object can be concatenated with an object reference,
which implicitly calls the referenced object’s toString method.

VAR-1.E.7 - Documentation for APIs and libraries are essential to
understanding the attributes and behaviors of an object of a class.

VAR-1.E.8 - Classes in the APIs and libraries are grouped into packages.

boolean equals(String other)— Returns true if this is equal to other;
returns false otherwise

String substring(int from, int to) — Returns the substring beginning at
index from and ending at index to - 1
String substring(int from)— Returns substring(from, length())

Copyright, CompuScholar, Inc.

Page 6 of 18

Chapter 5, Lesson 3

Chapter 5, Lesson 3

Chapter 4, Lesson 2
Chapter 5, Lesson 3

Chapter 4, Lesson 2

Chapter 4, Lesson 2

Chapter 4, Lesson 2

Chapter 4, Lesson 2

Chapter 4, Lesson 2

Chapter 4, Lesson 2

Chapter 4, Lesson 2

Chapter 4, Lesson 2

Chapter 4, Lesson 2

Chapter 4, Lesson 2

Chapter 4, Lesson 2

Chapter 4, Lesson 2

Chapter 11, Lesson 3
Chapter 17, Lesson 1

Chapter 17, Lesson 1

VAR-1.F.2 - The following Integer methods and constructors — including
what they do and when they are used—are part of the Java Quick Reference:

Integer(int value) — Constructs a new Integer object that represents
the specified int value
Integer.MIN_VALUE — The minimum value represented by an int or
Integer
Integer.MAX_VALUE — The maximum value represented by an int or
Integer
int intValue() — Returns the value of this Integer as an int

VAR-1.F.3 - The following Double methods and constructors — including
what they do and when they are used—are part of the Java Quick Reference:

Double(double value) —Constructs a new Double object that
represents the specified double value

double doubleValue() — Returns the value of this Double as a double

TOPIC 2.8: Wrapper Classes: Integer and Double
VAR-1.F.1 - The Integer class and Double class are part of the java.lang
package.

int compareTo(String other)— Returns a value < 0 if this is less than
other; returns zero if this is equal to other; returns a value > 0 if this is
greater than other

VAR-1.E.13 - A string identical to the single element substring at position
index can be created by calling substring(index, index + 1).

VAR-1.F.4 - Autoboxing is the automatic conversion that the Java compiler
makes between primitive types and their corresponding object wrapper
classes. This includes converting an int to an Integer and a double to a
Double.
VAR-1.F.5 - The Java compiler applies autoboxing when a primitive value is:
* Passed as a parameter to a method that expects an object of the
corresponding wrapper class.
* Assigned to a variable of the corresponding wrapper class.
VAR-1.F.6 - Unboxing is the automatic conversion that the Java compiler
makes from the wrapper class to the primitive type. This includes converting
an Integer to an int and a Double to a double.
VAR-1.F.7 - The Java compiler applies unboxing when a wrapper class object
is:
* Passed as a parameter to a method that expects a value of the
corresponding primitive type.
* Assigned to a variable of the corresponding primitive type.

MOD-1.H.1 - Static methods are called using the dot operator along with the
class name unless they are defined in the enclosing class.

CON-1.D.1 - The Math class is part of the java.langpackage.

TOPIC 2.9: Using the Math Class

Copyright, CompuScholar, Inc.

Page 7 of 18

Chapter 17, Lesson 1

Chapter 17, Lesson 1

Chapter 17, Lesson 1

Chapter 17, Lesson 1

Chapter 17, Lesson 1

Chapter 17, Lesson 1

Chapter 17, Lesson 1

Chapter 17, Lesson 1

CITATION(S)

Chapter 7, Lesson 1

Chapter 7, Lesson 1

Chapter 7, Lesson 1

Chapter 7, Lesson 2

Chapter 7, Lesson 2

Chapter 7, Lesson 2

Chapter 7, Lesson 2

Chapter 7, Lesson 2

double abs(double x) — Returns the absolute value of a double value

double pow(double base, double exponent) — Returns the value of
the first parameter raised to the power of the second parameter

double random() — Returns a double value greater than or equal to
0.0 and less than 1.0

UNIT 3: Boolean Expressions and if Statements

TOPIC 3.1: Boolean Expressions

TOPIC 3.4: elseif Statements

double sqrt(double x) — Returns the positive square root of a double
value

CON-1.D.4 - The values returned from Math.random can be manipulated to
produce a random int or double in a defined range.

CON-1.D.2 - The Math class contains only static methods.

CON-1.D.3 - The following static Math methods—including what they do and
when they are used—are part of the Java Quick Reference:

int abs(int x) — Returns the absolute value of an int value

CON-1.E.1 - Primitive values and reference values can be compared using
relational operators (i.e., == and !=).
CON-1.E.2 - Arithmetic expression values can be compared using relational
operators (i.e., <, >, <=, >=).
CON-1.E.3 - An expression involving relational operators evaluates to a
Boolean value.

CON-2.A.1 - Conditional statements interrupt the sequential execution of
statements.
CON-2.A.2 - if statements affect the flow of control by executing different
statements based on the value of a Boolean expression.
CON-2.A.3 - A one-way selection (if statement) is written when there is a set
of statements to execute under a certain condition. In this case, the body is
executed only when the Boolean condition is true.

CON-2.A.4 - A two-way selection is written when there are two sets of
statements— one to be executed when the Boolean condition is true, and
another set for when the Boolean condition is false. In this case, the body of
the “if” is executed when the Boolean condition is true, and the body of the
“else” is executed when the Boolean condition is false.

CON-2.A.5 - A multi-way selection is written when there are a series of
conditions with different statements for each condition. Multi-way selection
is performed using if-else-if statements such that exactly one section of code
is executed based on the first condition that evaluates to true.

TOPIC 3.2: if Statements and Control Flow

TOPIC 3.3: if-else Statements

Copyright, CompuScholar, Inc.

Page 8 of 18

Chapter 7, Lesson 2

Chapter 7, Lesson 1

Chapter 7, Lesson 1

Chapter 7, Lesson 1

Chapter 7, Lesson 1

Chapter 7, Lesson 1

Chapter 7, Lesson 1

Chapter 5, Lesson 2

Chapter 15, Lesson 5

Chapter 7, Lesson 1

Chapter 15, Lesson 5

CITATION(S)

Chapter 7, Lesson 5

Chapter 7, Lesson 5

Chapter 7, Lesson 5

Chapter 7, Lesson 5

Chapter 7, Lesson 5
Chapter 8, Lesson 2

CON-2.C.2 - In loops, the Boolean expression is evaluated before each
iteration of the loop body, including the first. When the expression evaluates
to true, the loop body is executed. This continues until the expression
evaluates to false, whereupon the iteration ceases.
CON-2.C.3 - A loop is an infinite loop when the Boolean expression always
evaluates to true.
CON-2.C.4 - If the Boolean expression evaluates to false initially, the loop
body is not executed at all.

UNIT 4: Iteration

TOPIC 4.1: while Loops

TOPIC 3.7: Comparing Objects

TOPIC 3.6: Equivalent Boolean Expressions

CON-2.C.5 - Executing a return statement inside an iteration statement will
halt the loop and exit the method or constructor.

CON-1.H.4 - Often classes have their own equals method, which can be used
to determine whether two objects of the class are equivalent.

CON-2.C.1 - Iteration statements change the flow of control by repeating a
set of statements zero or more times until a condition is met.

CON-1.F.1 - Logical operators !(not), &&(and), and ||(or) are used with
Boolean values. This represents the order these operators will be evaluated.
CON-1.F.2 - An expression involving logical operators evaluates to a Boolean
value.
CON-1.F.3 - When the result of a logical expression using && or || can be
determined by evaluating only the first Boolean operand, the second is not
evaluated. This is known as short-circuited evaluation.

CON-1.G.1 - De Morgan’s Laws can be applied to Boolean expressions.

CON-1.G.2 - Truth tables can be used to prove Boolean identities.

CON-1.G.3 - Equivalent Boolean expressions will evaluate to the same value
in all cases.

CON-1.H.1 - Two object references are considered aliases when they both
reference the same object.
CON-1.H.2 - Object reference values can be compared, using == and !=, to
identify aliases
CON-1.H.3 - A reference value can be compared with null, using == or !=, to
determine if the reference actually references an object.

CON-2.B.1 - Nested if statements consist of if statements within if
statements.

TOPIC 3.5: Compound Boolean Expressions

Copyright, CompuScholar, Inc.

Page 9 of 18

Chapter 17, Lesson 4
Chapter 20, Lesson 1

Chapter 17, Lesson 4
Chapter 20, Lesson 1

Chapter 7, Lesson 4

Chapter 7, Lesson 4

Chapter 7, Lesson 4

Chapter 7, Lessons 4-5

Chapter 7, Lesson 4

Chapter 17, Lesson 4
Chapter 20, Lesson 1

Chapter 7, Lessons 4-5
Chapter 8 Activity

Chapter 14, Lesson 2
Chapter 7, Lessons 4-5

Chapter 8 Activity
Chapter 14, Lesson 2

Chapter 20, Lessons 2-3

CITATION(S)

Chapter 10, Lesson 3

Chapter 10, Lesson 3

CON-2.D.2 - There are standard algorithms to:
* Determine a minimum or maximum value
* Compute a sum, average, or mode

CON-2.E.1 - There are three parts in a for loop header: the initialization, the
Boolean expression, and the increment. The increment statement can also
be a decrement statement.
CON-2.E.2 - In a for loop, the initialization statement is only executed once
before the first Boolean expression evaluation. The variable being initialized
is referred to as a loop control variable.
CON-2.E.3 - In each iteration of a for loop, the increment statement is
executed after the entire loop body is executed and before the Boolean
expression is evaluated again.
CON-2.E.4 - A for loop can be rewritten into an equivalent while loop and
vice versa.
CON-2.E.5 - “Off by one” errors occur when the iteration statement loops
one time too many or one time too few.

CON-2.F.1 - There are standard algorithms that utilize String traversals to:
* Find if one or more substrings has a particular property
* Determine the number of substrings that meet specific criteria
* Create a new string with the characters reversed

CON-2.G.1 - Nested iteration statements are iteration statements that
appear in the body of another iteration statement.

TOPIC 5.1: Anatomy of a Class

CON-2.D.1- There are standard algorithms to:
* Identify if an integer is or is not evenly divisible by another integer
* Identify the individual digits in an integer
* Determine the frequency with which a specific criterion is met

TOPIC 4.2: for Loops

TOPIC 4.3: Developing Algorithms Using Strings

TOPIC 4.4: Nested Iteration

TOPIC 4.5: Informal Code Analysis

MOD-2.A.1 - The keywords public and private affect the access of classes,
data, constructors, and methods.

UNIT 5: Writing Classes

CON-2.G.2 - When a loop is nested inside another loop, the inner loop must
complete all its iterations before the outer loop can continue.

CON-2.H.1 - A statement execution count indicates the number of times a
statement is executed by the program.

MOD-2.A.2 - The keyword private restricts access to the declaring class,
while the keyword public allows access from classes outside the declaring

Copyright, CompuScholar, Inc.

Page 10 of 18

Chapter 10, Lesson 3

Chapter 10, Lesson 3

Chapter 11, Lesson 1

Chapter 10, Lesson 3

Chapter 10, Lesson 3

Chapter 10, Lesson 3

Chapter 10, Lesson 3

Chapter 10, Lesson 3

Chapter 10, Lesson 2

Chapter 11, Lesson 1

Chapter 11, Lesson 1

Chapter 11, Lesson 1

Chapter 11, Lesson 1

Chapter 2, Lesson 2

Chapter 2, Lesson 2
Chapter 24, Lesson 2

Chapter 24, Lesson 3

Chapter 24, Lesson 3

MOD-2.A.5 - Constructors are designated public.

MOD-2.A.6 - Access to behaviors can be internal or external to the class.
Therefore, methods can be designated as either public or private.

MOD-2.C.2 - Three types of comments in Java include /* */, which generates
a block of comments, //, which generates a comment on one line, and /**
*/, which are Javadoc comments and are used to create API documentation.
MOD-2.C.3 - A precondition is a condition that must be true just prior to the
execution of a section of program code in order for the method to behave as
expected. There is no expectation that the method will check to ensure
preconditions are satisfied.

MOD-2.B.1 - An object’s state refers to its attributes and their values at a
given time and is defined by instance variables belonging to the object. This
creates a “has-a” relationship between the object and its instance variables.
MOD-2.B.2 - Constructors are used to set the initial state of an object, which
should include initial values for all instance variables.
MOD-2.B.3 - Constructor parameters are local variables to the constructor
and provide data to initialize instance variables.
MOD-2.B.4 - When a mutable object is a constructor parameter, the instance
variable should be initialized with a copy of the referenced object. In this
way, the instance variable is not an alias of the original object, and methods
are prevented from modifying the state of the original object.

MOD-2.C.4 - A postcondition is a condition that must always be true after the
execution of a section of program code. Postconditions describe the
outcome of the execution in terms of what is being returned or the state of
an object

MOD-2.B.5 - When no constructor is written, Java provides a no-argument
constructor, and the instance variables are set to default values.

MOD-2.C.1- Comments are ignored by the compiler and are not executed
when the program is run.

MOD-3.A.1 - Data encapsulation is a technique in which the implementation
details of a class are kept hidden from the user.
MOD-3.A.2 - When designing a class, programmers make decisions about
what data to make accessible and modifiable from an external class. Data
can be either accessible or modifiable, or it can be both or neither.
MOD-3.A.3 - Instance variables are encapsulated by using the private access
modifier.
MOD-3.A.4 - The provided accessor and mutator methods in a class allow
client code to use and modify data.

TOPIC 5.3: Documentation with Comments

TOPIC 5.2: Constructors

MOD-2.A.3 - Classes are designated public.

MOD-2.A.4 - Access to attributes should be kept internal to the class.
Therefore, instance variables are designated as private.

Copyright, CompuScholar, Inc.

Page 11 of 18

Chapter 24, Lesson 3

Chapter 10, Lesson 3

Chapter 8, Lesson 2

Chapter 8, Lesson 2

Chapter 8, Lesson 2

Chapter 8, Lesson 2

Chapter 15, Lesson 5

Chapter 15, Lesson 5

Chapter 8, Lesson 1
Chapter 10, Lesson 3

Chapter 10, Lesson 3

Chapter 10, Lesson 3

Chapter 8, Lessons 2-3

Chapter 8, Lesson 3

Chapter 8, Lesson 3

Chapter 8, Lesson 3

Chapter 8, Lesson 3

Chapter 11, Lesson 3

MOD-2.C.5 - Programmers write method code to satisfy the postconditions
when preconditions are met

TOPIC 5.7: Static Variables and Methods

MOD-2.F.4- When an actual parameter is a primitive value, the formal
parameter is initialized with a copy of that value. Changes to the formal
parameter have no effect on the corresponding actual parameter.

MOD-2.F.1 - Methods can only access the private data and methods of a
parameter that is a reference to an object when the parameter is the same
type as the method’s enclosing class.
MOD-2.F.2 - Non-void methods with parameters receive values through
parameters, use those values, and return a computed value of the specified
type.
MOD-2.F.3 - It is good programming practice to not modify mutable objects
that are passed as parameters unless required in the specification.

TOPIC 5.6: Writing Methods

MOD-2.F.5 - When an actual parameter is a reference to an object, the
formal parameter is initialized with a copy of that reference, not a copy of
the object. If the reference is to a mutable object, the method or constructor
can use this reference to alter the state of the object.
MOD-2.F.6 - Passing a reference parameter results in the formal parameter
and the actual parameter being aliases. They both refer to the same object.

MOD-2.G.1 - Static methods are associated with the class, not objects of the
class.

MOD-2.E.2 - A mutator (modifier) method is often a void method that
changes the values of instance variables or static variables.

MOD-2.D.5 - The return keyword is used to return the flow of control to the
point immediately following where the method or constructor was called.
MOD-2.D.6 - The toString method is an overridden method that is included in
classes to provide a description of a specific object. It generally includes what
values are stored in the instance data of the object.
MOD-2.D.7 - If System.out.print or System.out.println is passed an object,
that object’s toString method is called, and the returned string is printed.

MOD-2.E.1 - A void method does not return a value. Its header contains the
keyword void before the method name.

MOD-2.D.1 - An accessor method allows other objects to obtain the value of
instance variables or static variables.
MOD-2.D.2 - A non-void method returns a single value. Its header includes
the return type in place of the keyword void.
MOD-2.D.3 - In non-void methods, a return expression compatible with the
return type is evaluated, and a copy of that value is returned. This is referred
to as “return by value.”
MOD-2.D.4 - When the return expression is a reference to an object, a copy
of that reference is returned, not a copy of the object.

TOPIC 5.4: Accessor Methods

TOPIC 5.5: Mutator Methods

Copyright, CompuScholar, Inc.

Page 12 of 18

Chapter 11, Lesson 3

Chapter 11, Lesson 3

Chapter 11, Lesson 3

Chapter 11, Lesson 3

Chapter 11, Lesson 3

Chapter 11, Lesson 3

Chapter 11, Lesson 3

Chapter 10, Lesson 2

Chapter 10, Lesson 2

Chapter 10, Lesson 2

Chapter 22, Lesson 1

Chapter 10, Lesson 2

Chapter 10, Lesson 2

Chapter 1, Lesson 4
Chapter 9, Lesson 3

Chapter 24 Lesson 3
Chapter 1, Lesson 4-5

Chapter 1, Lesson 4-5

CITATION(S)

Chapter 14, Lesson 1

MOD-2.G.2 - Static methods include the keyword static in the header before
the method name
MOD-2.G.3 - Static methods cannot access or change the values of instance
variables.
MOD-2.G.4 - Static methods can access or change the values of static
variables.
MOD-2.G.5 - Static methods do not have a this reference and are unable to
use the class’s instance variables or call non-static methods.
MOD-2.H.1 - Static variables belong to the class, with all objects of a class
sharing a single static variable.

VAR-1.G.2 - When there is a local variable with the same name as an instance
variable, the variable name will refer to the local variable instead of the
instance variable.
VAR-1.G.3 - Formal parameters and variables declared in a method or
constructor can only be used within that method or constructor.

MOD-2.H.2 - Static variables can be designated as either public or private and
are designated with the static keyword before the variable type.
MOD-2.H.3 - Static variables are used with the class name and the dot
operator, since they are associated with a class, not objects of a class.

VAR-1.G.1 - Local variables can be declared in the body of constructors and
methods. These variables may only be used within the constructor or
method and cannot be declared to be public or private.

VAR-1.G.4 - Through method decomposition, a programmer breaks down a
large problem into smaller subproblems by creating methods to solve each
individual subproblem.

TOPIC 5.8: Scope and Access

TOPIC 5.9: this Keyword

VAR-2.A.1 - The use of array objects allows multiple related items to be
represented using a single variable.

VAR-1.H.1 - Within a non-static method or a constructor, the keyword this is
a reference to the current object—the object whose method or constructor
is being called.
VAR-1.H.2 - The keyword this can be used to pass the current object as an
actual parameter in a method call.

IOC-1.A.1 - System reliability is limited. Programmers should make an effort
to maximize system reliability.
IOC-1.A.2 - Legal issues and intellectual property concerns arise when
creating programs.
IOC-1.A.3 - The creation of programs has impacts on society, economies, and
culture. These impacts can be beneficial and/or harmful.

TOPIC 5.10: Ethical and Social Implications of Computing Systems

UNIT 6: Array

TOPIC 6.1: Array Creation and Access

Copyright, CompuScholar, Inc.

Page 13 of 18

Chapter 14, Lesson 1

Chapter 14, Lesson 1

Chapter 14, Lesson 1

Chapter 14, Lesson 1

Chapter 14, Lesson 1

Chapter 14, Lesson 1

Chapter 14, Lesson 1
Chapter 14, Lesson 5
Chapter 14, Lesson 1
Chapter 14, Lesson 5

Chapter 14, Lesson 1
Chapter 14, Lesson 5

Chapter 14, Lesson 5

Chapter 14, Lesson 5

Chapter 14, Lesson 5

Chapter 14, Lesson 5

Chapter 17, Lesson 4
Chapter 19, Lessons 2-3

Chapter 20, Lesson 1

VAR-2.C.1 - An enhanced for loop header includes a variable, referred to as
the enhanced for loop variable.

VAR-2.B.3 - Since the indices for an array start at 0 and end at the number of
elements − 1, “off by one” errors are easy to make when traversing an array,
resulting in an ArrayIndexOutOfBoundsExceptionbeing thrown.

VAR-2.A.7 - The valid index values for an array are 0 through one less than
the number of elements in the array, inclusive. Using an index value outside
of this range will result in an ArrayIndexOutOfBoundsExceptionbeing thrown.

VAR-2.B.1 - Iteration statements can be used to access all the elements in an
array. This is called traversing the array.
VAR-2.B.2 - Traversing an array with an indexed for loop or while loop
requires elements to be accessed using their indices.

VAR-2.A.2 - The size of an array is established at the time of creation and
cannot be changed.

VAR-2.A.3 - Arrays can store either primitive data or object reference data.

VAR-2.A.4 - When an array is created using the keyword new, all of its
elements are initialized with a specific value based on the type of elements:
* Elements of type int are initialized to 0
* Elements of type double are initialized to 0.0
* Elements of type boolean are initialized to false
* Elements of a reference type are initialized to the reference value null. No
objects are automatically created

VAR-2.A.5 - Initializer lists can be used to create and initialize arrays.

VAR-2.A.6 - Square brackets ([]) are used to access and modify an element in
a 1D array using an index.

TOPIC 6.2: Traversing Arrays

TOPIC 6.3: Enhanced forLoop for Arrays

VAR-2.C.2 - For each iteration of the enhanced for loop, the enhanced for
loop variable is assigned a copy of an element without using its index.
VAR-2.C.3 - Assigning a new value to the enhanced for loop variable does not
change the value stored in the array.
VAR-2.C.4 - Program code written using an enhanced for loop to traverse and
access elements in an array can be rewritten using an indexed for loop or a
while loop.

CON-2.I.1 - There are standard algorithms that utilize array traversals to:
* Determine a minimum or maximum value
* Compute a sum, average, or mode
* Determine if at least one element has a particular property
* Determine if all elements have a particular property
* Access all consecutive pairs of elements
* Determine the presence or absence of duplicate elements
* Determine the number of elements meeting specific criteria

TOPIC 6.4: Developing Algorithms Using Arrays

Copyright, CompuScholar, Inc.

Page 14 of 18

Chapter 17, Lesson 4
Chapter 19, Lessons 2-3

Chapter 20, Lesson 1

CITATION(S)

Chapter 14, Lesson 4

Chapter 14, Lesson 4

Chapter 14, Lesson 4

Chapter 14, Lesson 4

Chapter 14, Lesson 4

Chapter 14, Lesson 4

Chapter 14, Lesson 4

Chapter 14, Lesson 4

Chapter 14, Lesson 4

Chapter 14, Lesson 4

Chapter 14, Lesson 4

Chapter 14, Lesson 4

Chapter 14, Lesson 4

Chapter 14, Lesson 4
Chapter 14, Lesson 5

Chapter 14, Lesson 4

Chapter 14, Lesson 4

VAR-2.D.4 - When ArrayList<E> is specified, the types of the reference
parameters and return type when using the methods are type E.
VAR-2.D.5 - ArrayList<E> is preferred over ArrayList because it allows the
compiler to find errors that would otherwise be found at run-time.

VAR-2.D.6 - The ArrayList class is part of the java.util package. An import
statement can be used to make this class available for use in the program.
VAR-2.D.7 - The following ArrayList methods—including what they do and
when they are used—are part of the Java Quick Reference:

CON-2.I.2 - There are standard array algorithms that utilize traversals to:
* Shift or rotate elements left or right
* Reverse the order of the elements

VAR-2.D.1 - An ArrayList object is mutable and contains object references.

VAR-2.D.2 - The ArrayList constructor ArrayList() constructs an empty list.

VAR-2.D.3 - Java allows the generic type ArrayList<E>, where the generic
type Especifies the type of the elements.

UNIT 7: ArrayList

TOPIC 7.1: Introduction to ArrayList

TOPIC 7.2: ArrayList Methods

VAR-2.E.3 - Since the indices for an ArrayListstart at 0 and end at the number
of elements − 1, accessing an index value outside of this range will result in
an ArrayIndexOutOfBoundsExceptionbeing thrown.

VAR-2.E.1 - Iteration statements can be used to access all the elements in an
ArrayList. This is called traversing the ArrayList.
VAR-2.E.2 - Deleting elements during a traversal of an ArrayList requires
using special techniques to avoid skipping elements.

int size() -Returns the number of elements in the list

boolean add(E obj) - Appends obj to end of list; returns true

void add(int index, E obj) -Inserts obj at position index (0 <=index <=
size) ,moving elements at position index and higher to the right (adds
1 to their indices) and adds 1 to size
E get(int index) - Returns the element at position index in the list

E set(int index, E obj) — Replaces the element at position index with
obj; returns the element formerly at position index
E remove(int index) — Removes element from position index, moving
elements at position index + 1 and higher to the left (subtracts 1 from
their indices) and subtracts 1 from size; returns the element formerly
at position index

TOPIC 7.3: Traversing ArrayLists

Copyright, CompuScholar, Inc.

Page 15 of 18

Chapter 14, Lesson 5

Chapter 17, Lesson 4
Chapter 19, Lessons 2-3

Chapter 20, Lesson 1

Chapter 14 Activity

Chapter 19, Lesson 3

Chapter 19, Lesson 3

Chapter 19, Lesson 2

Chapter 20, Lessons 2-3

Chapter 1, Lessons 4-5
Suppl. Chapter 3, Lesson 1

Chapter 1, Lessons 4-5
Suppl. Chapter 3, Lesson 1

CITATION(S)

Chapter 14, Lesson 2

Chapter 14, Lesson 2

Chapter 14, Lesson 2

Chapter 14, Lesson 2

Chapter 14, Lesson 2

VAR-2.E.4 - Changing the size of an ArrayList while traversing it using an
enhanced for loop can result in a ConcurrentModificationException being
thrown. Therefore, when using an enhanced for loop to traverse an ArrayList,
you should not add or remove elements.

IOC-1.B.2 - Computer use and the creation of programs have an impact on
personal security. These impacts can be beneficial and/or harmful.

UNIT 8: 2D Array

TOPIC 8.1: 2D Arrays

TOPIC 7.4: Developing Algorithms Using ArrayLists

IOC-1.B.1 - When using the computer, personal privacy is at risk.
Programmers should attempt to safeguard personal privacy.

CON-2.J.1 - There are standard ArrayList algorithms that utilize traversals to:
* Insert elements
* Delete elements
* Apply the same standard algorithms that are used with 1D arrays
CON-2.J.2 - Some algorithms require multiple String, array, or ArrayList
objects to be traversed simultaneously.

CON-2.K.1 - There are standard algorithms for searching.

CON-2.K.2 - Sequential/linear search algorithms check each element in order
until the desired value is found or all elements in the array or ArrayList have
been checked.

CON-2.L.1 - Selection sort and insertion sort are iterative sorting algorithms
that can be used to sort elements in an array or ArrayList.
CON-2.M.1 - Informal run-time comparisons of program code segments can
be made using statement execution counts.

TOPIC 7.5: Searching

TOPIC 7.6: Sorting

TOPIC 7.7: Ethical Issues Around Data Collection

VAR-2.F.1 - 2D arrays are stored as arrays of arrays. Therefore, the way 2D
arrays are created and indexed is similar to 1D array objects.
VAR-2.F.2 - For the purposes of the exam, when accessing the element at
arr[first][second], the first index is used for rows, the second index is used for
columns.
VAR-2.F.3 - The initializer list used to create and initialize a 2D array consists
of initializer lists that represent 1D arrays
VAR-2.F.4 - The square brackets [row][col] are used to access and modify an
element in a 2D array
VAR-2.F.5 - “Row-major order” refers to an ordering of 2D array elements
where traversal occurs across each row, while “column-major order”
traversal occurs down each column.

Copyright, CompuScholar, Inc.

Page 16 of 18

Chapter 14, Lesson 2

Chapter 14, Lesson 2

Chapter 14, Lesson 5

Chapter 19, Lesson 3

Chapter 14, Lesson 2

CITATION(S)

Chapter 15, Lesson 2

Chapter 15, Lesson 2

Chapter 15, Lesson 2

Chapter 15, Lesson 2

Chapter 15, Lesson 6

Chapter 15, Lesson 6

Chapter 15, Lesson 6

Chapter 15, Lesson 6
MOD-3.B.8 - When a subclass’s constructor does not explicitly call a
superclass’s constructor using super, Java inserts a call to the superclass’s no-
argument constructor.

CON-2.N.2 - All standard 1D array algorithms can be applied to 2D array
objects.

MOD-3.B.1 - A class hierarchy can be developed by putting common
attributes and behaviors of related classes into a single class called a
superclass.
MOD-3.B.2 - Classes that extend a superclass, called subclasses, can draw
upon the existing attributes and behaviors of the superclass without
repeating these in the code.
MOD-3.B.3 - Extending a subclass from a superclass creates an “is-a”
relationship from the subclass to the superclass.
MOD-3.B.4 - The keyword extends is used to establish an inheritance
relationship between a subclass and a superclass. A class can extend only one
superclass.

MOD-3.B.5 - Constructors are not inherited.

MOD-3.B.6 - The superclass constructor can be called from the first line of a
subclass constructor by using the keyword super and passing appropriate
parameters.
MOD-3.B.7 - The actual parameters passed in the call to the superclass
constructor provide values that the constructor can use to initialize the
object’s instance variables.

VAR-2.G.1 - Nested iteration statements are used to traverse and access all
elements in a 2D array. Since 2D arrays are stored as arrays of arrays, the
way 2D arrays are traversed using for loops and enhanced for loops is similar
to 1D array objects.
VAR-2.G.2 - Nested iteration statements can be written to traverse the 2D
array in “row-major order” or “column-major order.”
VAR-2.G.3 - The outer loop of a nested enhanced for loop used to traverse a
2D array traverses the rows. Therefore, the enhanced for loop variable must
be the type of each row, which is a 1D array. The inner loop traverses a single
row. Therefore, the inner enhanced for loop variable must be the same type
as the elements stored in the 1D array.
CON-2.N.1 - When applying sequential/linear search algorithms to 2D arrays,
each row must be accessed then sequential/linear search applied to each
row of a 2D array.

TOPIC 8.2: Traversing 2D Arrays

UNIT 9: Inheritance

TOPIC 9.1: Creating Superclasses and Subclasses

TOPIC 9.2: Writing Constructors for Subclasses

Copyright, CompuScholar, Inc.

Page 17 of 18

Chapter 15, Lesson 6

Chapter 15, Lesson 4

Chapter 15, Lesson 4

Chapter 15, Lesson 4

Chapter 15, Lesson 4

Chapter 15, Lesson 6

Chapter 15, Lesson 6

Chapter 15, Lesson 2

Chapter 15, Lesson 3

Chapter 15, Lesson 3

Chapter 15, Lesson 3
Chapter 16 Activities

Chapter 15, Lesson 5

Chapter 15, Lesson 5

Chapter 15, Lesson 5

Chapter 15, Lesson 5

Chapter 15, Lesson 5

Chapter 15, Lesson 5

MOD-3.E.3 - The following Object class methods and constructors—including
what they do and when they are used—are part of the Java Quick Reference:
* boolean equals(Object other)
* String toString()

MOD-3.B.9 - Regardless of whether the superclass constructor is called
implicitly or explicitly, the process of calling superclass constructors
continues until the Object constructor is called. At this point, all of the
constructors within the hierarchy execute beginning with the Object
constructor

MOD-3.E.2 - The Object class is part of the java.lang package

MOD-3.B.11 - Any method that is called must be defined within its own class
or its superclass.
MOD-3.B.12 - A subclass is usually designed to have modified (overridden) or
additional methods or instance variables
MOD-3.B.13 - A subclass will inherit all public methods from the superclass;
these methods remain public in the subclass.

MOD-3.B.14 - The keyword super can be used to call a superclass’s
constructors and methods.
MOD-3.B.15 - The superclass method can be called in a subclass by using the
keyword super with the method name and passing appropriate parameters.

MOD-3.C.1 - When a class S “is-a” class T, T is referred to as a superclass, and
S is referred to as a subclass.

TOPIC 9.3: Overriding Methods

TOPIC 9.4: super Keyword

TOPIC 9.5: Creating References Using Inheritance Hierarchies

TOPIC 9.6: Polymorphism

TOPIC 9.7: Object Superclass

MOD-3.C.2 - If S is a subclass of T, then assigning an object of type S to a
reference of type T facilitates polymorphism.
MOD-3.C.3 - If S is a subclass of T, then a reference of type T can be used to
refer to an object of type Tor S.
MOD-3.C.4 - Declaring references of type T, when S is a subclass of T, is
useful in the following declarations:
* Formal method parameters
* arrays — T[]varArrayList<T>var

MOD-3.D.1 - Utilize the Object class through inheritance.

MOD-3.D.2 - At compile time, methods in or inherited by the declared type
determine the correctness of a non-static method call.
MOD-3.D.3 - At run-time, the method in the actual object type is executed
for a non-static method call

MOD-3.E.1 - The Object class is the superclass of all other classes in Java.

MOD-3.B.10 - Method overriding occurs when a public method in a subclass
has the same method signature as a public method in the superclass.

Copyright, CompuScholar, Inc.

Page 18 of 18

Chapter 15, Lesson 5

CITATION(S)

Chapter 19, Lesson 1

Chapter 19, Lesson 1

Chapter 19, Lesson 1

Chapter 19, Lesson 1

Chapter 19, Lesson 1

Chapter 19, Lesson 1

Chapter 19, Lesson 3

Chapter 19, Lesson 3

Chapter 19, Lesson 3

Chapter 19, Lesson 3
Chapter 19 Activity

Chapter 19, Lesson 2
CON-2.Q.1 - Merge sort is a recursive sorting algorithm that can be used to
sort elements in an array or ArrayList.

CON-2.O.2 - Recursive methods contain at least one base case, which halts
the recursion, and at least one recursive call.

CON-2.O.1 - A recursive method is a method that calls itself.

MOD-3.E.4 - Subclasses of Object often override the equals and toString
methods with class-specific implementations.

UNIT 10: Recursion

TOPIC 10.1: Recursion

CON-2.O.3 - Each recursive call has its own set of local variables, including
the formal parameters.

CON-2.P.4 - The binary search algorithm can be written either iteratively or
recursively.

CON-2.P.2 - The binary search algorithm starts at the middle of a sorted array
or ArrayList and eliminates half of the array or ArrayList in each iteration
until the desired value is found or all elements have been eliminated.
CON-2.P.3 - Binary search can be more efficient than sequential/linear
search.

CON-2.O.4 - Parameter values capture the progress of a recursive process,
much like loop control variable values capture the progress of a loop.
CON-2.O.5 - Any recursive solution can be replicated through the use of an
iterative approach.
CON-2.O.6 - Recursion can be used to traverse String, array, and ArrayList
objects.

CON-2.P.1 - Data must be in sorted order to use the binary search algorithm.

TOPIC 10.2: Recursive Searching and Sorting

