
Copyright 2012 by Homeschool Programming, Inc.

http://www.HomeschoolProgramming.com Page 1 of 12

Beyond the Android Emulator: Bonus Chapter

Updated March, 2012

This bonus chapter contains information about loading your application on a real Android device,
debugging on the device, and publishing your application to Google Play (the Android Market).

Note: This content was originally written for our 1st edition course, but it still applicable to future editions.

Copyright Notices:

Java, Java Development Kit (JDK) and related terms are all copyright by Oracle Corporation. Please see
http://www.oracle.com for more details. Android, Android Software Development Kit, and Android
Development Tools and related terms are all copyright by Google, Inc.

This document, TeenCoderTM: Java Programming, TeenCoderTM: Android Programming and related terms
are copyright by Homeschool Programming, Inc. This document may not be transmitted or
reproduced without written permission except under terms of your purchased course license.

Disclaimer:

Homeschool Programming, Inc, and their officers and shareholders, assume no liability for damage
to personal computers or loss of data residing on personal computers arising due to the use or
misuse of this course material. Always follow instructions provided by the manufacturer of 3rd party
programs that may be included or referenced by our courses.

Note: Any red highlights below are added for emphasis and are not present on the actual pages!

http://www.homeschoolprogramming.com/
http://www.oracle.com/

Copyright 2012 by Homeschool Programming, Inc.

http://www.HomeschoolProgramming.com Page 2 of 12

Lesson One: Deploying to a Real Device

Now that you have learned the basics of creating Android applications, you may already have a few
great ideas for some killer apps. Once you create your apps, how do you get them to the customer?
The best method for getting your applications in front of some users is to put it on the Google Play
market. But before you attempt to upload your application to Google Play, you really should test it
out on an actual device!

Android Devices

There are a few things to do before you can put your application on a device. The first item of
business, obviously, is access to an Android device. In order to test your application, you will need
to have an Android device that has at least the minimum version of the Android OS that your
application requires. If you have created an application that requires Android 2.3, you cannot test it
on a device that is running Android 1.6!

Once you have found a compatible device,
you will need to makes some changes to the
device settings. On your device, go to the
Settings application and choose
“Applications”. On the Applications screen,
enable the check mark in the “Unknown
Sources” option. This will allow your device
to install “non-Google Play” applications.

You will also need to turn on USB Debugging on the device. This will enable you to debug the
application as it is running on a real device. To do this, open the Settings application and click on

“Applications” again. This time, you will
need to choose “Development” from the
menu and then make sure there is a
checkmark in the “USB Debugging” option.

http://www.homeschoolprogramming.com/

Copyright 2012 by Homeschool Programming, Inc.

http://www.HomeschoolProgramming.com Page 3 of 12

USB Drivers

Once you have configured the Android device, you will need a way to connect this device with your
computer. The best way to do this is with a USB cable connected between the computer and the
device. You will need to locate the USB cable that came with your device (or find any other standard
USB cable with the right-sized connector).

If you are using a Mac computer, you can just connect the USB cable from your Mac to the Android
device and the Mac will automatically recognize your device. If you are using a Windows computer,
the process is a little bit more complicated. Windows computers require the installation of a USB
driver that can communicate between your specific device and the Windows operating system. This
USB driver can typically be found on the device manufacturer’s website. The Android Developer
website has a very comprehensive list of device manufacturer website links located here:
http://developer.android.com/sdk/oem-usb.html. These links should take you directly to a website
that will have some information on downloading the USB driver that is appropriate for your device.
You will need to know the exact manufacturer and model of your Android device in order to find
the proper USB driver.

Once you find the driver, follow the manufacturer’s installation instructions to get the driver
installed on your machine. When this process is complete, Windows should recognize your device
and you should be ready to go!

Running the Application on a Device

Now that you have configured your device, installed your USB driver and connected the device to
your computer, you are ready to run and debug an application on the device. In Eclipse, first make
sure that your application is marked as “debuggable” in the “AndroidManifest.xml” file. Then switch
to the DDMS perspective to view the device in the list of available devices. If you do not see your
device listed in the DDMS list, you have not connected or configured the USB connection properly.

If you do see the device listed, then you are ready to run your application. You will need to check
your Run Configurations to make sure that you will be able to select the real device as the target
device when you hit the “Run” button in the Eclipse software. Select “Run  Run Configurations”
from the Eclipse menu.

This will bring up the Run Configurations screen. Choose the “Target” tab and then make sure that
the “Manual” option is selected in the Deployment Target Selection Mode section and click on
“Apply”.

http://www.homeschoolprogramming.com/
http://developer.android.com/sdk/oem-usb.html

Copyright 2012 by Homeschool Programming, Inc.

http://www.HomeschoolProgramming.com Page 4 of 12

Now when you run your application, a screen will appear that will allow you to choose your target
device. When this screen appears, choose the real device and then click “Start”. This will attempt to
install and start the application on your attached Android device.

This is a very powerful tool in performing final debugging on your Android application. When your
application is working perfectly on your device, it’s time to upload it to Google Play! We’ll discuss
how to do that in the next few lessons.

http://www.homeschoolprogramming.com/

Copyright 2012 by Homeschool Programming, Inc.

http://www.HomeschoolProgramming.com Page 5 of 12

Lesson Two: Configuring Application for Publishing

Now that you have finished and tested your killer Android application, it’s time to upload it to
Google Play and make your millions!

Pre-Build Checklist

Before you build and upload your application, there are some simple checks that you should
perform to make sure the application is ready for prime-time.

The first file that you should check is the “AndroidManifest.xml” file. This file requires certain
elements in order to be accepted by Google Play. You should open up this file and make sure the
following elements are included:

• android:versionCode – This is an integer value that represents the current version number
for your application. The Android system maintains this value as a number so that it can be
checked programmatically by other applications. You should start with a value of 1, and
incrementally increase the number with any updates that you provide for the users. This
version code value is not typically the same as the version information that the user sees on
the screen.

• android:versionName – This is the string value that represents the version value that the
user sees in the application. This value is typically in the form: <major>.<minor>.<point>,
where the major value is the major release number, minor is the minor release number and
the point value represents a slight change in versions. So your application could start out
with a version name of “1.0.0”. Then you could create a slight update and change the version
name to “1.1.0” or “1.0.1”. The next major release (with big changes to the application)
would be version name “2.0.0”.

• android:icon – This is the icon image for your application. This is the image that will appear
on the device’s Home Screen, Launcher menu, Manage Applications screen and so on. You
will want to make sure this attribute points to the correct image for your application.

• android:label – This is the default name for your application, which will appear in the
Google Play screen, the Home Screen, and any application list on the device. You should
make sure this attribute is set to a short, meaningful name. You don’t want to spend all this
time on your application only to have it show up in a list as “MyApp”!

http://www.homeschoolprogramming.com/

Copyright 2012 by Homeschool Programming, Inc.

http://www.HomeschoolProgramming.com Page 6 of 12

In addition to these basic attributes, you will want to make sure that certain other elements are
handled correctly in the manifest. First, you will want to turn off the debugging in the application by
removing the “debugging=true” line in the manifest file. Then you should take a look at all of your
<uses-permission> tags to make sure that they are all still required and/or relevant for your
application. You should not request permissions that you program does not need to work properly.

Finally, examine the <uses-sdk> tag in the manifest. This tag should have two main attributes:
“android:targetSdkVersion” and “android:minSdkVersion”. The targetSdkVersion value should
indicate the SDK version number for which that the application was primarily designed. In most of
our examples, we were targeting the 2.3.3 version of the Android OS, which corresponds to the
SDK version number 10. The “minSdkVersion” on the other hand, is the minimum SDK version
on which your application will run. These values do not need to be the same! In fact, it’s fairly
common to target a higher SDK version and still allow your application to run on an older version.

Google Play will automatically filter the applications that are shown to a user based on the SDK
version of their device. If you have a device with Android 1.6 installed, you will not be shown any
applications that have a “minSdkVersion” of 5 or above. If you have a device with Android 2.2
installed, you cannot install any applications that have a “minSdkVersion” of 9 or above, and so on.

http://www.homeschoolprogramming.com/

Copyright 2012 by Homeschool Programming, Inc.

http://www.HomeschoolProgramming.com Page 7 of 12

This means that in order to make your application available to more users in the Google Play
market, you may want to lower your “minSdkVersion” number. Just make sure that you are not
using any functionality that is not available in the minimum SDK version.

Verifying Images

Images are very important on an Android device. You will want to make sure that you have
provided appropriate-sized images for any graphics that your application will display. This includes
making images that can be used in any of the available resolutions on the target devices. Making sure
your application images will look great on any device is a good way to make an application
impressive to your potential users.

In addition to the basic images in your application, you will need to create a special high-resolution
application icon that will be displayed in the Google Play application. This icon should be a 512
pixels x 512 pixels version of your application launcher icon, saved as a 32-bit PNG.

 You will also need to provide at least two screenshots for your application. These screenshots are
used to give the user an idea of what the application looks like before they decide to download and
install it from Google Play. It’s been proven time and time-again that including at least two good-
quality screenshots will result in more downloads and installations of your application.

http://www.homeschoolprogramming.com/

Copyright 2012 by Homeschool Programming, Inc.

http://www.HomeschoolProgramming.com Page 8 of 12

Your application screenshots can be 320w x 480h, 480w x 800h, or 480w x 854h and should be
saved as 24-bit PNG or JPG files with no transparency. You can add up to 8 screenshots for each

application. The easiest way
to create these screenshots
is to run your application in
the emulator, and then use
the “Screenshot” button in
the DDMS perspective.

The Screenshot button is
found at the top of the
DDMS Perspective and
looks like a camera image.
When you click on this
button, you will see a
Device Screen Capture
window appear on the
screen. Note that it may
take a few seconds for
your screen image to
appear.

If you don’t like the image that has been captured, you can go back to your emulator window and
set up a new screen. When you are ready to capture the image again, just hit the “Refresh” button
in the Screen Capture application.

Once you have that perfect screenshot, you can click on the “Save” button to save the image to
your computer. You can also choose the “Copy” button to save the image to the clipboard. Then
you can paste it into the image editor of your choice.

http://www.homeschoolprogramming.com/

Copyright 2012 by Homeschool Programming, Inc.

http://www.HomeschoolProgramming.com Page 9 of 12

Packaging and Signing Application

There is one last step to complete before we can package our application for public use. All Android
applications must be digitally signed in order to be placed in the Google Play market. What does this
mean? This certification provides some assurance to your users that you are a trusted programmer
whose code will not do anything malicious to their devices. In addition, any updates that you offer
for your application must have the same digital signature as the original application. This assures the
user that only the original developer can change or update their application.

The digital signature consists of a public and private key value. The public key value remains on the
application. The private key value remains with the developer. When the user installs an update, the
two keys are compared to make sure they match.

So do you need to buy an expensive certification from a third-party company? No! All Android
applications are capable of being self-signed. This means that you can create your own certification.
In fact, the Eclipse software actually makes this process very easy!

To see full-color, screen-by-screen documentation on signing and packaging your applications,
please read the “Signing_Android_Apps.pdf” document from our website.

http://www.homeschoolprogramming.com/

Copyright 2012 by Homeschool Programming, Inc.

http://www.HomeschoolProgramming.com Page 10 of 12

Lesson Three: Getting Your Application to the User

Publishing to Google Play

Now that you have your application signed and packaged, you are ready to
fling it to the eager masses. One of the best ways to get your application in
front of a large pool of users is to publish it to the Google Play market.
Google Play is a place where users can browse applications, read and write
reviews, and install applications. This view is always filtered to show only
applications that will works on the connected device. This is why it’s
important to mark your “minSdkVersion” as low as you can, in order to get

your application in front of the most users.

In order to publish your application on Google Play, you will need to create a Google Play account.
Please see our “Creating_a_Google_Play_Account.pdf” document from our website for a
description of this process.

Free Applications vs. Paid Applications

So now that you have your Google Play account, you will need to make a decision. Do you charge a
fee for your application? Or do you offer it for free? There are pros and cons for each option.

If you choose to charge a fee for your application, you will
begin making money as soon as your application sells to the

first user. This is definitely a pro in the instant-gratification column. However, there are some down-
sides to charging for applications. First of all, you will need to create a Google Wallet Merchant
account in order to collect the fee from your users. This is a fairly simple procedure, but you will
have to provide some personal information to Google. Typically, you will need to provide your
Social Security number, a credit card and some bank account information. Google will take care of
collecting the payment for you and will send the money to your bank account within 24-48 hours of
the sale (minus a small fee, of course!).

Why does it take at least 24 hours to receive your payment? The Google Play market has a 24 hour
guarantee for all applications purchased through the market. If the user decides they don’t like your
application within those 24 hours, they can request a full refund. This means that Google will
typically wait this long before processing your fee.

http://www.homeschoolprogramming.com/

Copyright 2012 by Homeschool Programming, Inc.

http://www.HomeschoolProgramming.com Page 11 of 12

Another downside to paid applications is that they statistically result in far fewer installs than free
applications. Users are often wary of spending even a small amount of money on an application
made by a relatively-unknown developer.

Free applications, on the other hand, result in many more downloads and installs. Statistics typically
show that after a user views your application on Google Play, there is about a 50% - 80% chance
that they will download and install the application. So this means many more installs of your
application, but how does this work for you, the developer? Most free applications include
advertising that pays the developer a fee for each time the ad is displayed or clicked by the user. To
add these advertisements, you can sign up for free accounts at places like Google AdSense. They will
give you detailed instructions on how to setup the ads within your application. Believe it or not, this
free application and advertising model will often make more money than a paid application!

One of the more popular sales models is to offer a free application with advertising and then offer
to upgrade the user for a small fee to an application that runs without the advertisements. This
allows the user to test out your application for free and upgrade when they like it enough to get rid
of those pesky ads!

http://www.homeschoolprogramming.com/

Copyright 2012 by Homeschool Programming, Inc.

http://www.HomeschoolProgramming.com Page 12 of 12

Viewing Application Progress

Once your application is uploaded to Google Play, you can check its progress frequently. Your
customers will tell you if they like your application or if they think it could be improved. Customers
will rate your program with a star rating, leave
comments about the app and might even offer
error reports. This is important information! A
responsive developer is one that is highly-
successful. Pay attention to what your
customers have to say and use this information
to learn and to build a better application.

Other Methods of Installing Apps

The Google Play market is not the only way to get your application into the hands of users. You can
actually take your APK file and install it directly on a device. In order for this to work, the user must
go into the “Settings” application, choose the “Applications” option and then make sure that the
“Allow Unknown Sources” option is checked. This will allow “non-Google Play” applications to be
installed on the device.

Once this is done, you can distribute your application by putting the APK on an SD card, sending it
through email to the device, or by hosting it on your own web server. Once the file is on the device,
the user only needs to click on the APK file to automatically launch the install process.

Using this method allows you to offer your application without paying the $25 Google Play fee.

Amazon App Store for Android

A recent addition to the Google Play world is the Amazon App Store for Android.
This is Amazon’s attempt to enter the lucrative app market for these devices. You can
view the store at: http://www.amazon.com/appstore or you can install the Amazon
App Store app on your Android device. The App Store is still relatively new, but it is
gaining popularity quickly.

You can add applications to the App Store by registering as a developer on the Amazon site. The
cost is around $99 per year, but they almost always have some sort of deal where you can get your
first year for free. For more information on adding your own applications to the Amazon App Store,
you can view their developer page at: https://developer.amazon.com/public/.

http://www.homeschoolprogramming.com/
http://www.amazon.com/appstore
https://developer.amazon.com/public/

	Copyright Notices:
	Disclaimer:
	Android Devices
	USB Drivers
	Running the Application on a Device
	Pre-Build Checklist
	Verifying Images
	Packaging and Signing Application
	Publishing to Google Play
	Free Applications vs. Paid Applications
	Viewing Application Progress
	Other Methods of Installing Apps
	Amazon App Store for Android

