Copyright 2015, CompuScholar. Inc.

CompuScholar, Inc.
Alignment to Nevada "Computer Science"
Course Standards

Nevada Course Details:

Course Name: Computer Science

Primary Cluster: Information and Media Technologies Standards

Course Code(s): n/a

Credit: 1

Grade Level: 9th-12th

State Standards http://cteae.nv.gov/Career and Technical Education/Standards/

CompuScholar Course Details:

Course Title: TeenCoder: Java Programming (Abridged)
Course ISBN: 978-0-9887070-4-7
Course Year: 2015

Note 1: Citation(s) listed may represent a subset of the instances where objectives are met throughout the

Introduction

TeenCoder: Java Programming (Abridged) is an computer science course based on the Java language. This
document demonstrates how the course meets standards within the Nevada Computer Science sequence. The
Nevada standards listed below represent a 3-year / 3-credit program, so TeenCoder: Java Programming
(Abridged) would be appropriate for the first-year course. Areas marked as "n/a" are deferred to second or
third-year courses.

CONTENT STANDARD 1.0: UNDERSTAND THE RELATIONSHIP BETWEEN HARDWARE AND SOFTWARE

PERFORMANCE STANDARD 1.1 : DEMONSTRATE KNOWLEDGE OF THE RELATIONSHIP CITATION(S)
BETWEEN HARDWARE AND SOFTWARE
1.1.1 Demonstrate proper use of industry-standard terminology New terms are

introduced and used
throughout the course

1.1.2 Examine the numbers systems: binary and hexadecimal Chapter 17, Lesson 2

1.13 Describe machine limitations of finite representations (e.g., integer |Chapter 17, Lesson 2
bounds, imprecision of floating- point representations, and round-

1.14 Describe the central processing unit (CPU) and memory Chapter 1, Lesson 1

1.1.5 Compare and contrast low- and high-level programming languages |[Chapter 1, Lesson 3

www.CompuScholar.com/nevada Page 1 of 5

Copyright 2015, CompuScholar. Inc.

CONTENT STANDARD 2.0: UNDERSTAND CONCEPTS OF PROBLEM SOLVING AND ALGORITHM

DEVELOPMENT

PERFORMANCE STANDARD 2.1 : UNDERSTAND A PROBLEM DESCRIPTION CITATION(S)
2.1.1 Describe the problem Chapter 17, Lesson 4
2.1.2 Demonstrate the solution(s) by hand Chapter 17, Lesson 4
2.1.3 Explain how to validate the solution(s) Chapter 17, Lesson 4
PERFORMANCE STANDARD 2.2 : DEVELOP AN ALGORITHM CITATION(S)
2.2.1 Identify expected input and output Chapter 17, Lesson 4
2.2.2 Utilize basic steps in algorithmic problem solving Chapter 17, Lesson 4
2.2.3 Use logical thinking to create an algorithm utilizing pseudo code Chapter 17, Lesson 4
and/or a flow chart
2.2.4 Discuss top-down versus bottom-up development n/a
PERFORMANCE STANDARD 2.3 : TEST ALGORITHMS CITATION(S)
2.3.1 Generate test cases and expected results Suppl. Lesson 4
2.3.2 Utilize test cases to walk through algorithms n/a
233 Use results of the walk-through to adjust or modify algorithms n/a

CONTENT STANDARD 3.0: UNDERSTAND PROGRAMMING LANGUAGE CONCEPTS

PERFORMANCE STANDARD 3.1 : UTILIZE PROGRAMMING CONSTRUCTS CITATION(S)
3.1.1 Differentiate between syntax and semantics n/a
3.1.2 Incorporate primitive data types Chapter 4, Lesson 1
Chapter 4, Lesson 2
3.1.3 Demonstrate input from different sources Chapter 6 (All)
Chapter 13 (All)
Chapter 18 (All)
3.14 Compare and contrast constants and variables Chapter 4, Lesson 2
3.15 Select and implement conditional control Chapter 7, Lesson 2
3.1.6 Select and implement iteration Chapter 7, Lesson 4
Chapter 7, Lesson 5
3.1.7 Recognize and implement sequential control Chapter 2, Lesson 2
3.1.8 Demonstrate output to different destinations Chapter 6 (All)
Chapter 13 (All)
Chapter 18 (All)
3.1.9 Design and implement user-defined data types Chapter 10, Lesson 2
3.1.10 Select and implement recursion Chapter 19, Lesson 1
3.1.11 Illustrate pointers and reference variables Chapter 4, Lesson 1

www.CompuScholar.com/nevada

Page 2 of 5

Copyright 2015, CompuScholar. Inc.

PERFORMANCE STANDARD 3.2 : PRACTICE PROCEDURAL PROGRAMMING CITATION(S)
3.21 Design functions/methods Chapter 8 (All)
3.2.2 Properly apply scope (i.e., global versus local) Chapter 10, Lesson 2
3.2.3 Select appropriate parameter passing by value or by reference Chapter 8, Lesson 2
3.24 Select when to use void versus non-void functions/methods Chapter 8, Lesson 2
PERFORMANCE STANDARD 3.3 : PRACTICE OBJECT-ORIENTED PROGRAMMING (OOP) CITATION(S)
3.3.1 Describe and implement abstract data types (i.e., data and Chapter 15 (All)
functions)
3.3.2 Employ modularity and reusability Chapter 10, Lesson 1
Chapter 10, Lesson 2
3.3.3 Employ encapsulation and information hiding Chapter 10, Lesson 1
Chapter 10, Lesson 3
3.34 Select and implement composition (“has a”) and/or inheritance (“is |Chapter 10, Lesson 2
a” Chapter 15 (All)
Chapter 16 (All)
3.35 Apply polymorphism Chapter 15 (All)
Chapter 16 (All)
3.3.6 Establish abstract base classes and interfaces Chapter 15 (All)
Chapter 16 (All)

CONTENT STANDARD 4.0: DEVELOP PROGRAMS

PERFORMANCE STANDARD 4.1 : USE PROPER IMPLEMENTATION STRATEGIES CITATION(S)
41.1 Evaluate and select language and tools (i.e., development Chapter 2, Lesson 1
environment, IDE, debugger) Chapter 2, Lesson 3
Chapter 3, Lesson 1
Chapter 9, Lesson 4
4.1.2 Select procedural versus OOP paradigm Chapter 10, Lesson 1
4.1.3 Distribute code among multiple files Chapter 10, Lesson 2
Chapter 15, Lesson 2
4.1.4 Resolve runtime exceptions and handle errors Chapter 9, Lesson 2
Chapter 9, Lesson 3
PERFORMANCE STANDARD 4.2 : TEST AND DEBUG PROGRAMS CITATION(S)
4.2.1 Employ debugging techniques (e.g., debugger, extra output Chapter 9, Lesson 3
statements, or hand-tracing codes) to identify and correct errors Chapter 9, Lesson 4
4.2.2 Identify boundary cases and generate appropriate test data Chapter 9, Lesson 3
4.2.3 Categorize errors (e.g., compile-time, run-time, logic, etc.) Chapter 9, Lesson 1
4.2.4 Test classes and libraries in isolation n/a
4.2.5 Perform integration testing of modules from multiple programmers n/a

www.CompuScholar.com/nevada Page 3 of 5

Copyright 2015, CompuScholar. Inc.

PERFORMANCE STANDARD 4.3 : ANALYZE ALGORITHMS

CITATION(S)

43.1 Informally compare and contrast run times (i.e., best- and worst- Chapter 19, Lesson 2
case scenarios)
4.3.2 Assess algorithms using Big-O notation n/a (covered in our AP

CS A Java course)

CONTENT STANDARD 5.0: CULTIVATE GOOD PROGRAMMING STYLE

PERFORMANCE STANDARD 5.1 : EMPLOY CODING STANDARDS

CITATION(S)

5.1.1 Use consistent naming conventions Chapter 4, Lesson 2
5.1.2 Use meaningful identifiers Chapter 4, Lesson 2
5.1.3 Use white space appropriately (e.g., indentation, blank lines, etc.) Chapter 2, Lesson 2
5.1.4 Use named constants appropriately Chapter 4, Lesson 2
5.1.5 Implement functions/methods to perform a single task Chapter 8 (All)

5.1.6 Produce a code that is clear, concise, and easy to maintain Chapter 2, Lesson 2

and all activities
5.1.7 Produce a code that compiles cleanly with no warning Chapter 2, Lesson 3

and all activities

PERFORMANCE STANDARD 5.2 : DEMONSTRATE GOOD DOCUMENTATION SKILLS CITATION(S)

5.2.1 Compose pre- and post-conditions for all functions and methods n/a

5.2.2 Compose meaningful comments explaining critical or complex code |Chapter 2, Lesson 2

5.2.3 Describe program modules, variables, constants, and data types Chapter 2, Lesson 4
Chapter 4, Lesson 1
Chapter 4, Lesson 2

5.2.4 Construct Unified Modeling Language (UML) class diagrams Suppl. Lesson 5

CONTENT STANDARD 6.0: UNDERSTAND STANDARD DATA STRUCTURES

PERFORMANCE STANDARD 6.1 : UTILIZE SIMPLE DATA TYPES

CITATION(S)

6.1.1 Select appropriate primitive types Chapter 4, Lesson 1
6.1.2 Implement declarations and initialization Chapter 4, Lesson 2
6.1.3 Explain operators and order of operations Chapter 7, Lesson 1

PERFORMANCE STANDARD 6.2 : DEMONSTRATE KNOWLEDGE OF ARRAYS

CITATION(S)

6.2.1 Manipulate strings as arrays Chapter 5, Lesson 3

6.2.2 Assess implementation strategy (i.e., static or dynamic) n/a

6.2.3 Access arrays (i.e., sequential, random) Chapter 14, Lesson 1
Chapter 14, Lesson 3

6.2.4 Search arrays (i.e., sequential, binary) Chapter 19, Lesson 3

6.2.5 Sort arrays (i.e., bubble, selection, insertion, and merge) Chapter 19, Lesson 2

www.CompuScholar.com/nevada

Page 4 of 5

Copyright 2015, CompuScholar. Inc.

PERFORMANCE STANDARD 6.3 : DEMONSTRATE KNOWLEDGE OF CLASSES

CITATION(S)

6.3.1 Compare and contrast classes and objects Chapter 10, Lesson 1
Chapter 10, Lesson 2
6.3.2 Implement class declaration Chapter 10, Lesson 2
6.3.3 Create constructors and destructors Chapter 11, Lesson 1
6.3.4 Implement overloaded and overridden functions/methods Chapter 8, Lesson 2
Chapter 15, Lesson 4
6.3.5 Apply OOP concepts, including inheritance, polymorphism, Chapter 10 (All)
interfaces, and abstract classes Chapter 11 (All)
Chapter 15 (All)
Chapter 16 (All)
6.3.6 Manipulate strings as objects Chapter 5 (All)
6.3.7 Explore template/generics Chapter 14, Lesson 2
PERFORMANCE STANDARD 6.4 : DEMONSTRATE KNOWLEDGE OF LISTS CITATION(S)
6.4.1 Use singly-linked lists Chapter 14, Lesson 2
6.4.2 Explore doubly- and circularly-linked lists Chapter 14, Lesson 2
6.4.3 Assess implementation strategy (i.e., array, dynamic) n/a
6.4.4 Access list with and without iterators Chapter 14, Lesson 2
Chapter 14, Lesson 3
6.4.5 Search lists (i.e., sequential and binary) Chapter 14, Lesson 2
Chapter 14, Lesson 3
6.4.6 Implement insertion and deletion functions/methods n/a (student will use,
but not implement)
6.4.7 Compare and contrast sorting algorithms (i.e., bubble, selection, n/a in context of lists.
insertion, and merge) Array sorting found
Chapter 14, Lesson 2
6.4.8 Select and implement stacks and queues Suppl. Lesson 3
6.4.9 Use iterators Chapter 14, Lesson 3

CONTENT STANDARD 7.0 :

DEMONSTRATE KNOWLEDGE OF COMPUTING IN SOCIETAL CONTEXT

PERFORMANCE STANDARD 7.1 : RECOGNIZE THE SYSTEM RELIABILITY ISSUES CITATION(S)
7.1.1 Research examples of system failures and their impact n/a
7.1.2 Explain cross-platform issues n/a
PERFORMANCE STANDARD 7.2 : EXAMINE ETHICAL AND LEGAL ISSUES CITATION(S)

7.2.1 Debate intellectual property, patent, and copyright laws Chapter 1, Lesson 4
7.2.2 Describe the meaning of privacy in relation to the use of technology |Chapter 1, Lesson 4
7.2.3 Describe conflict of interest Chapter 1, Lesson 4
7.2.4 Analyze non-disclosure agreements n/a
7.2.5 Compare and contrast the code of ethics of the Institute of Electrical [Chapter 1, Lesson 4

and Electronic Engineers (IEEE) and Association for Computing (ACM only)

Machinery (ACM)
www.CompuScholar.com/nevada Page 5 of 5

