
Copyright, CompuScholar, Inc.

www.CompuScholar.com/ohio Page 1 of 5

Course Title:
Course Code(s):
Credit:
Grade Level:
State Standards Link:

Course Title:
Course ISBN: 978-0-9887070-7-8
Course Year: 2019

Course Standards

CITATION(S)

Chapter 13, Lesson 1

Chapter 13, Lessons 1 - 2

Chapter 13, Lessons 1, 4

Chapter 13, Lessons 1, 2, 4

CompuScholar, Inc.
Alignment to Ohio "145090 - Game Design" Course Standards

Strand 2 - IT Fundamentals
Learners apply fundamental principles of IT, including the history of IT and its impact on society, common
industry terms, systems theory, information storage and retrieval, database management, and computer
hardware, software, and peripheral device configuration and installation. This base of knowledge and skills may
be applied across the career field.

1

http://education.ohio.gov/Topics/Career-Tech/Information-Technology-Career-
Field

2.9.1. Identify and incorporate branding strategies.

2.9.4. Develop a conceptual model and design brief for the project.

2.9.2. Determine the scope and purpose of the project.

2.9.3. Determine the target audience, client needs, expected outcomes,
objectives, and budget.

Information Technology
145090 - Game Design

9th-12th

Ohio Course Details:

CompuScholar Course Details:
Unity Game Programming

Note 2: Citation(s) for a "Lesson" refer to the "Lesson Text" elements and associated "Activities" within the
course, unless otherwise noted. The "Instructional Video" components are supplements designed to introduce
or re-enforce the main lesson concepts, and the Lesson Text contains full details.

Note 1: Citation(s) listed may represent a subset of the instances where objectives are met throughout the
course.

This course will prepare students to design and program games using commercial and open source programs
and applications. Students will learn industry standard programming language constructs to write programs
that integrate classes, class methods, and class instances. Students will learn input method handling, animation,
collision detection, game physics and basic artificial intelligence.

Course Description

2.9. Project Concept Proposal: Develop a project concept proposal.

http://education.ohio.gov/Topics/Career-Tech/Information-Technology-Career-Field
http://education.ohio.gov/Topics/Career-Tech/Information-Technology-Career-Field

Copyright, CompuScholar, Inc.

www.CompuScholar.com/ohio Page 2 of 5

Chapters 14, 25, 26

Chapter 13, Lessons 1, 4
Chapter 25, Lesson 2

CITATION(S)

Chapter 25, Lesson 2

N/A

Chapter 11, Lesson 2
Chapters 14, 26 Activity 3

N/A

Chapter 11, Lesson 2
Chapters 14, 26 Activity 3
Chapters 14, 26 Activity 3

CITATION(S)

Chapters 14, 26 Activity 1

Chapters 14, 26 Activity 1

Chapters 14, 26 Activity 3

N/A

Chapters 14, 26 Activity 3

CITATION(S)

Chapter 6, Lesson 1

Chapter 6, Lesson 3

Chapter 6, Lesson 2

2.12.5. Make corrections indicated by test results.

2.12.6. Seek stakeholder acceptance upon successful completion of the test
plan.

5.2.3. Write code that uses arithmetic operations.

Strand 5 - Programming and Software System
Learners apply principles of computer programming and software development to develop code; build, test,
and debug programs; create finished products; and plan, analyze, design, develop, implement, and support
software applications.

2.13.5. Test delivered application to assure that it is fully functional for the
customer or user and meets all requirements.

2.13.2. Communicate rollout plans to key stakeholders in a timely manner.

2.9.5. Develop a timeline, communication plan, task breakdown, costs (e.g.,
equipment, labor), deliverables, and responsibilities for completion.
2.9.6. Develop and present a comprehensive proposal to stakeholders.

2.12.3. Develop test cases that are realistic, compare with expected
performance, and include targeted platforms and device types.

2.12.1. Create a written procedure agreed by the stakeholders and project
team for determining the acceptability of the project deliverables.

2.12.2. Develop a test system that accurately mimics external interfaces.

5.2.2. Identify the scope of data (e.g., global versus local, variables,
constants, arrays).

2.13.1. Include overall project goals and timelines in the rollout plan.

5.2.1. Compare and contrast primitive types of numeric and nonnumeric
data (e.g., integers, floats, Boolean, strings).

2.13.3. Conduct final review and approvals according to company standards.

2.13.4. Identify support staff, training needs, and contingency plans in the
rollout plan.

2.12. Performance Tests and Acceptance Plans: Develop performance tests
and acceptance plans.

2.13. Rollout and Handoff: Plan rollout and facilitate handoff to customer.

5.2. Computational and String Operations: Develop code that performs
computational and string operations.

2.12.4. Develop, perform, and document usability and testing integration.

Copyright, CompuScholar, Inc.

www.CompuScholar.com/ohio Page 3 of 5

As needed throughout (e.g.
keeping score in each game)

N/A

CITATION(S)

Chapter 7, Lesson 1

N/A

Chapter 7, Lessons 1 - 2

Chapter 7, Lessons 1 - 2

Chapter 7, Lessons 1 - 2

Chapter 12, Lessons 2 - 3

Chapter 7, Lesson 3

Chapter 12 Activity (nested
loops)

Chapter 9, Lesson 3

Chapter 11, Lesson 1

N/A

Chapter 9

CITATION(S)

Chapter 2, Lesson 1

Chapter 3

Chapters 2, 3 and throughout the
course

Chapters 14, 26 Activity 3

Chapters 14, 26 Activity 3

Chapter 11, Lessons 2 - 3
Chapters 14, 26 Activity 3

5.3. Logical Operations and Control Structures: Develop code that uses
logical operations and control structures.

5.3.6. Write code that uses repetition control structures (e.g., while, for).

5.3.7. Write code that uses selection control structures (e.g., case, switch).

5.3.3. Write code that uses logical operators (e.g., and, or, not).

5.3.4. Write code that uses relational operators and compound conditions.

5.3.5. Write code that uses conditional control structures (e.g. if, if-then-
else).

5.2.5. Write code that applies string operations (e.g., concatenation,
pattern matching, substring).

5.3.1. Explain Boolean logic.

5.3.2. Solve a truth table.

5.3.8. Write code that uses nested structures and recursion.

5.3.9. Write code that creates and calls functions.

5.3.10. Code error-handling techniques.

5.3.11. Write code to access data repositories.

5.3.12. Write code to create classes, objects, and methods.

5.4.1. Configure options, preferences, and tools.

5.4.2. Write and edit code in the IDE.

5.4.3. Compile or interpret a working program.

5.4.4. Define test cases.

5.4.5. Test the program using defined test cases.

5.4. Integrated Development Environment: Build and test a program using
an integrated development environment (IDE).

5.4.6. Correct syntax and runtime errors.

5.2.4. Write code that uses subtotals and final totals.

Copyright, CompuScholar, Inc.

www.CompuScholar.com/ohio Page 4 of 5

Chapter 11, Lessons 2 - 3
Chapters 14, 26 Activity 3

CITATION(S)

N/A

Chapter 1 and throughout the
course (Unity library)

Chapter 3 and throughout the
course (via .NET library)

N/A

Chapter 3, Lesson 3
Chapter 6, Lesson 1

All output is game-specific (e.g.
game scores, mini-maps)

CITATION(S)

Chapter 13, Lesson 1

Chapter 13, Lessons 1, 2, 4

Chapters 14, 26 Activity 1

Chapter 1

Chapter 13, Lessons 1, 2, 4

Chapter 13, Lessons 1, 2, 4

Chapter 13, Lessons 1, 2, 4

Chapters 13, 14, 26
Chapter 25, Lesson 2, Activity

Chapters 14, 26 Activity 2

Chapters 14, 26 Activity 2

Chapters 14, 26 Activity 3

Chapter 25, Lesson 1

Chapter 11, Lesson 2
Chapters 14, 26 Activity 3

5.6.11. Develop the application.

5.6.2. Identify constraints and system processing requirements.

5.6.3. Develop and adhere to timelines.

5.6.4. Identify a programming language, framework, and an integrated
development environment (IDE).
5.6.5. Identify input and output (I/O) requirements.

5.6.6. Design system inputs, outputs, and processes.

5.6.7. Document a design using the appropriate tools (e.g., program
flowchart, dataflow diagrams, Unified Modeling Language [UML]).
5.6.8. Create documentation (e.g., implementation plan, contingency plan,
data dictionary, user help).
5.6.9. Review the design (e.g., peer walkthrough).

5.6.10. Present system design to stakeholders.

5.6.12. Compare and contrast software methodologies (e.g., agile,
waterfall).
5.6.13. Perform code reviews (e.g., peer walkthrough, static analysis).

5.5.1. Develop programs using data validation techniques.

5.5.2. Develop programs that use reuse libraries.

5.5.3. Develop programs using operating system calls.

5.5.4. Develop programs that call other programs.

5.5.5. Use appropriate naming conventions and apply comments.

5.5.6. Format output (e.g., desktop, mobile, enterprise, reports, data files).

5.6.1. Determine requirements specification documentation.

5.6. Software Development Lifecycle: Apply the software development
lifecycle (SDLC).

5.5. Programming Conventions: Develop programs using applications
security practices.

5.4.7. Debug logic errors.

Copyright, CompuScholar, Inc.

www.CompuScholar.com/ohio Page 5 of 5

Chapter 11, Lessons 2 - 3
Chapters 14, 26 Activity 3

N/A

Chapter 25, Lessons 2 - 4

N/A

CITATION(S)

Chapter 25, Lesson 1

Chapter 25, Lesson 1

Chapter 25, Lesson 1

CITATION(S)

Chapter 22, Lessons 1 - 2
Chapter 14, Lesson 1
Chapter 21, Lesson 3

Chapter 4, Lesson 3

Chapter 21, Lesson 2

Chapter 13, Lesson 1

Chapter 22, Lessons 1 - 2
Chapter 14, Lesson 1
Chapter 23, Lesson 2

Chapters 17 - 18

Chapter 13, Lessons 1, 2, 4

Chapter 13, Lessons 1, 2, 4
Chapters 14, 22, 26
Chapters 13, 14, 26

7.2.10. Select and create visual design elements appropriate for the
intended audience and use.
7.2.11. Develop characters and narrative to support intended outcomes.

7.2.1. Choose a navigational menu structure (e.g., rollovers, dropdowns,
disjointed).
7.2.2. Construct and place navigational units.

7.2.3. Build in interactive elements.

7.2.4. Determine uses and needs for site maps, multimedia scripts,
storyboards, and flowcharts.
7.2.5. Make preliminary sketches showing placement of images and text on
screen.
7.2.6. Place buttons and navigational graphics.

7.2.7. Select colors based on color theory and psychology.

7.2.8. Describe music, video, and special effects to be used.

7.2.9. Provide a sample layout to stakeholders for review.

Strand 7 - Digital Media
Learners apply principles of digital media to produce interactive media; develop and produce multimedia
applications; integrate typography into media; create 3D models and 2D and 3D animation; and create digital
video, audio, and photographs.
7.2. Multimedia Tools: Develop navigational structures, scripts,
storyboards, and flowcharts for multimedia applications.

5.6.14. Ensure code quality by testing and debugging the application (e.g.,
system testing, user acceptance testing).
5.6.15. Train stakeholders.

5.6.16. Deploy the application.

5.6.17. Collect application feedback and maintain the application.

5.7.1. Explain version management and interface control.

5.7.2. Explain baseline and software lifecycle phases.

5.7.3. Analyze the impact of changes.

5.7. Configuration Management: Describe configuration management
activities.

	Table 1

