CompuScholar, Inc.

Alignment to Wisconsin Computer Science Standards

6th - 8th Grade

Wisconsin Standards Information:

CS Page	Wisconsin Computer Science Education Page
Standards Link:	Wisconsin Standards for Computer Science

CompuScholar Courses in this Grade Band:

Course Title:	Digital Savvy, ISBN 978-0-9887070-8-5
	Course Description and Syllabus
Course Title:	Web Design, ISBN 978-0-9887070-3-0
	Course Description and Syllabus
Course Title:	Python Programming, ISBN 978-1-946113-00-9
	Course Description and Syllabus

Wisconsin's Computer Science standards are broken into grade bands that list skills that should be mastered by the end of the band.

This document describes the CompuScholar course(s) that can be used to meet each standard. The citations DS, WD, PP correspond to the courses listed above. For example, "DS, PP" means the skill is covered in our Digital Savvy and Python Programming courses.

Wisconsin Computer Science Standards (6th - 8th Grade)

Algorithms and Programming (AP)	COMPUSCHOLAR COURSES
AP1.a: Develop algorithms.	
AP1.a.6.m - Decompose (break down) a computational problem into parts	РР
and create solutions for one or more parts.	
AP1.a.7.m - Identify how sub-problems could be recombined to create	РР
something new (e.g., break down the individual parts that would be needed	
to program a certain type of game and then show how the parts could be	
reused in other types of games).	
AP2.a: Develop and implement an artifact.	
AP2.a.6.m - Develop programs, both independently and collaboratively,	РР
which include sequencing with nested loops and multiple branches	
[Clarification At this level, students may use block-based and/or text-based	
languages].	
AP2.a.7.m - Produce computational artifacts with broad accessibility and	DS, WD, PP
usability through careful consideration of diverse needs and wants of the	
community.	

AP2.a.12.h - Design, develop, and implement a computing artifact that	DS, WD, PP
responds to an event (e.g., robot that responds to a sensor, mobile app that	
responds to a text message, sprite that responds to a broadcast).	
AP2.a.9.m - Create variables that represent different types of data and	DS, PP
manipulate their values.	
AP3.a: Recognize and cite sources.	
AP3.a.3.m - Provide proper attribution when code is borrowed or built upon.	DS, WD, PP
AP3.b: Communicate about technical and social issues.	
AP3.b.5.m - Discuss how algorithms have impacted society—both the	DS, PP
beneficial and harmful effects.	
AP3.b.6.m - Compare different algorithms that may be used to solve the	DS, PP
same problem in terms of their speed, clarity, and size (e.g., different	
algorithms solve the same problem, but one might be faster than the other).	
[Clarification Students are not expected to quantify these differences].	
AP3.b.7.m - Modify existing code to change its functionality and discuss the	РР
variety of ways in which to do this.	
AP3.c: Document code.	
AP3.c.1.m - Interpret the flow of execution of algorithms and predict their	DS, PP
outcomes. [Clarification Algorithms can be expressed using natural language,	
flow and control diagrams, comments within code, and pseudocode].	
AP3.c.2.m - Use documentation regarding code to modify programs.	DS, WD, PP
AP4.a: Create and use abstractions (representations) to solve complex	
computational problems.	
AP4.a.3.m - Define and use functions/ procedures that hide the complexity of	РР
a task and can be reused to solve similar tasks. [Clarification Students use	
and modify, but do not necessarily create, functions or procedures with	
parameters].	
AP5.a: Work together to solve computational problems using a variety of	
resources.	
AP5.a.5.m - Solicit and integrate peer feedback as appropriate to develop or	DS, WD, PP
refine a program.	
AP5.b: Foster an inclusive computing culture.	
AP5.b.2.m - Analyze team members' strengths and use them to foster an	DS, WD, PP
inclusive computing culture.	
AP6.a: Test and debug computational solutions.	
AP6.a.3.m - Use testing and debugging methods to ensure program	DS, WD, PP
correctness and completeness.	
AP6.b: Develop and apply success criteria.	
AP6.b.2.m - Apply a rubric to determine if and how well a program meets	DS, WD, PP
objectives.	

Computing Systems (CS)	COMPUSCHOLAR COURSES	
CS1.a: Identify hardware and software components.		
CS1.a.5.m - Justify the suitability of hardware and software chosen to	DS	
accomplish a task (e.g., comparison of the features of a tablet vs. desktop,		
selecting which sensors and platform to use in building a robot or developing		
a mobile app).		
CS2.a: Problem solve and debug.		
CS2.a.3.m - Use a systematic process to identify the source of a problem	DS	
within individual and connected devices (e.g., follow a troubleshooting flow		
diagram, make changes to software to see if hardware will work, restart		
device, check connections, swap in working components).		
CS3.a: Generalize in computer systems.		
CS3.a.1.m - Analyze the relationship between a device's computational	DS	
components and its capabilities. (e.g., computing systems include not only		
computers, but also cars, microwaves, smartphones, traffic lights, and flash		
drives).		
CS4.a: Modify and create computational artifacts.		
CS4.a.1.m - Extend or modify existing programs to add simple features and	PP	
behaviors using different forms of inputs and outputs (e.g., inputs such as		
sensors, mouse clicks, data sets; outputs such as text, graphics, sounds).		

Data and Analysis (DA)	COMPUSCHOLAR COURSES
DA1.a: Represent and manipulate data.	
DA1.a.3.m - Represent data using different encoding schemes (e.g., binary,	DS, PP
Unicode, Morse code, shorthand, student-created codes).	
DA2.a: Gather data to support computational problem solving.	
DA2.a.3.m - Gather and organize multiple quantitative data elements using a	DS, PP
computational tool (e.g., spreadsheet software).	
DA2.b: Categorize and analyze data.	
DA2.b.3.m - Develop a strategy to answer a question by using a computer to	DS, PP
manipulate (e.g., sort, total and/or average, chart, graph) and analyze data	
that has been collected by the class or student.	
DA3.a: Communicate about data.	
DA3.a.4.m - Describe how different formats of stored data represent	DS, WD, PP
tradeoffs between quality and size. [Clarification compare examples of	
music, text and/or image formats].	
DA3.a.5.m - Explain the processes used to collect, transform, and analyze	DS
data to solve a problem using computational tools (e.g., use an app or	
spreadsheet form to collect data, decide which data to use or ignore, and	
choose a visualization method).	

DA4.a: Model with data.		
DA4.a.4.m - Revise computational models to more accurately reflect real-	DS, PP	
world systems (e.g., ecosystems, epidemics, spread of ideas).		
DA4.a.5.m - Modify an existing computational model to emphasize key	DS	
features and relationships within a system. (A model can be used to simulate		
events, examine theories and inferences, or make predictions).		

Impacts of Computing (IC)	COMPUSCHOLAR COURSES
IC1.a: Understand the impact technology has on our everyday lives and the	
effects of computing on the economy and culture.	
IC1.a.4.m - Provide examples of how computational artifacts and devices	DS
impact health and wellbeing, both positively and negatively, locally and	
globally (e.g., effects of globalization, and automation).	
IC1.a.5.m - Explain how computer science fosters innovation and can	DS, PP
enhance careers and disciplines.	
IC1.b: Understand the effects of computing on communication and	
relationships.	
IC1.b.3.m - Analyze and present beneficial and harmful effects of personal	DS
electronic communication and social electronic communication.	
IC1.b.4.m - Describe ways in which the internet impacts global	DS
communication and collaborating.	
IC2.a: Understand the effects of the digital divide.	
IC2.a.2.m - Explain the impact of the digital divide (i.e., uneven access to	DS
computing, computing education, and interfaces) on access to critical	
information.	
IC2.b: Test and refine digital artifacts for accessibility.	
IC2.b.2.m - Critically evaluate and redesign a computational artifact to	WD
remove barriers to universal access (e.g., using captions on images, high	
contrast colors, and/or larger font sizes).	
IC2.c: Collaborate ethically in the creation of digital artifacts.	
IC2.c.4.m - Use the internet ethically and safely to work with a group of	DS, WD, PP
people who are not physically near to solve a problem or reach a goal.	
IC3.a: Understand intellectual property and fair use.	
IC3.a.2.m - Understand laws associated with digital information (e.g.,	DS, WD, PP
intellectual property, fair use, and Creative Commons).	
IC3.b: Assess the practice of digital privacy.	
IC3.a.3.m - Describe ethical issues that relate to computing devices and	DS, WD, PP
networks (e.g., equity of access, security, hacking, intellectual property,	
copyright, Creative Commons licensing, and plagiarism).	
IC3.b.4.m - Analyze and summarize negative and positive impacts of using	N/A
data and information to categorize people, predict behavior, and make	
recommendations based on those predictions (e.g., customizing search	
results or targeted advertising based on previous browsing history can save	
search time and limit options at the same time).	

Networking and the Internet (NI)	COMPUSCHOLAR COURSES
NI1.a: Use secure practices for personal computing.	
NI1.a.4.m - Analyze and summarize security risks associated with weak	DS
passwords, lack of encryption, insecure transactions, and persistence of data.	
NI1.a.5.m - Understand security issues with general computer use.	DS, WD, PP
NI1.b: Understand the importance of institutional security.	
NI1.b.2.m - Explain the principles of information security (confidentiality,	DS
integrity, availability) and authentication techniques.	
NI2.a: Demonstrate how the internet works at the physical layer.	
NI2.a.6.m - Simulate how information is transmitted as packets through	N/A
multiple devices over the internet and networks.	
NI2.a.7.m - Explain, using basic terms, how a wireless or cellular network	DS, WD
allows internet information to be transmitted from a server to a user device.	
NI2.b: Demonstrate how the internet works at the protocol layer.	
NI2.b.2.m - Define the term protocol, provide an example of protocols in	DS, WD
daily life, and explain their use on the internet.	
NI2.c: Demonstrate how the internet works at the addressing layer.	
NI2.c.3.m - Explain the hierarchical structure of the Internet Domain Name	DS, WD
System (IDNS).	
NI2.d: Demonstrate and explain encryption methods.	
NI2.d.2.m - Encode and decode text-based messages using basic algorithms	DS
(e.g., shift cipher, substitution cipher).	