CompuScholar, Inc.

Alignment to Wisconsin Computer Science Standards

9th - 11th Grade

Wisconsin Standards Information:

CS Page	Wisconsin Computer Science Education Page
Standards Link:	Wisconsin Standards for Computer Science

CompuScholar Courses in this Grade Band:

Course Title:	Digital Savvy, ISBN 978-0-9887070-8-5
	Course Description and Syllabus
Course Title:	Web Design, ISBN 978-0-9887070-3-0
	Course Description and Syllabus
Course Title:	Python Programming, ISBN 978-1-946113-00-9
	Course Description and Syllabus
Course Title:	Java Programming, ISBN 978-1-946113-99-3
	Course Description and Syllabus
Course Title:	Windows Programming with C#, ISBN 978-0-9887070-0-9
	Course Description and Syllabus
Course Title:	Unity Game Programming, ISBN 978-0-9887070-7-8
	Course Description and Syllabus

Wisconsin's Computer Science standards are broken into grade bands that list skills that should be mastered by the end of the band.

This document describes the CompuScholar course(s) that can be used to meet each standard. The citations DS, WD, PP, JP, WP, UGP correspond to the courses listed above. For example, "DS, PP" means the skill is covered in our Digital Savvy and Python Programming courses.

Wisconsin Computer Science Standards (9th - 12th Grade)

Algorithms and Programming (AP)	COMPUSCHOLAR COURSES
AP1.a: Develop algorithms.	
AP1.a.8.h - Analyze a problem and design and implement an algorithmic solution using sequence, selection, and iteration.	PP, JP, WP, UGP
AP1.a.9.h - Explain and demonstrate how modeling and simulation can be used to explore natural phenomena (e.g., flocking behaviors, queueing, life cycles).	PP, JP, WP, UGP
AP1.a.10.h - (+) Provide examples of computationally solvable problems and difficult-to-solve problems.	JP, WP, UGP
AP1.a.11.h - (+) Decompose a large-scale computational problem by identifying generalizable patterns and applying them in a solution.	PP, JP, WP, UGP

AP1.a.12.h - (+) Illustrate the flow of execution of a recursive algorithm.	JP, WP
AP1.a.13.h - (+) Describe how parallel processing can be used to solve large computational problems (e.g., SETI at Home, FoldIt).	N/A
AP1.a.14.h - (+) Develop and use a series of test cases to verify that a program performs according to its design specifications.	PP, JP, WP, UGP
AP1.a.15.h - (+) Explain the value of heuristic algorithms (discovery methods) to approximate solutions for difficult-to-solve computational problems.	JP, UGP
AP2.a: Develop and implement an artifact.	
AP2.a.10.h - Use user-centered research and design techniques (e.g., surveys, interviews) to create software solutions.	WD, JP, WP, UGP
AP2.a.11.h - Integrate grade-level appropriate mathematical techniques, concepts, and processes in the creation of computational artifacts.	DS, PP, JP, WP, UGP
AP2.a.5.i - Use mathematical operations to change a value stored in a variable.	DS, PP, JP, WP, UGP
AP2.a.13.h - (+) Decompose a computational problem by creating new data types, functions, or classes.	PP, JP, WP, UGP
AP2.a.14.h - (+) Develop programs for multiple computing platforms (e.g., computer desktop, web, mobile).	PP, JP, UGP
AP2.a.15.h - (+) Implement an Artificial Intelligence (AI) algorithm to play a game against a human opponent or solve a problem.	UGP
AP2.a.16.h - (+) Demonstrate code reuse by creating programming solutions using libraries and application program interfaces (APIs) (e.g., graphics libraries, maps, API).	WD, PP, JP, WP, UGP
AP3.a: Recognize and cite sources.	
AP3.a.4.h - Compare and contrast various software licensing schemes (e.g., open source, freeware, commercial).	DS, WD, PP, JP, WP, UGP
AP3.b: Communicate about technical and social issues.	
AP3.b.8.h - Evaluate and analyze how algorithms have impacted our society and discuss the benefits and harmful impacts of a variety of technological innovations.	DS, JP, WP, UGP
AP3.b.9.h - (+) Compare a variety of programming languages and identify features that make them useful for solving different types of problems and developing different kinds of systems (e.g., declarative, logic, parallel, functional, compiled, interpreted, real-time).	DS, JP, WP
AP3.b.10.h - (+) Modify an existing program to add additional functionality and discuss intended and unintended implications (e.g., breaking other functionality).	PP, JP, WP, UGP
AP3.c: Document code.	
AP3.c.3.h - (+) Describe how Artificial Intelligence (AI) drives many software and physical systems (e.g., autonomous robots, computer vision, pattern recognition, text analysis).	DS, WD, PP, JP, WP, UGP
AP3.c.4.h - Write appropriate documentation for programs.	WD, PP, JP, WP, UGP

AP3.c.5.h - (+) Use application programming interface (APIs) documentation	WD, PP, JP, WP, UGP
resources.	
AP3.c.6.h - Use online resources to answer technical questions.	DS, WD, PP, JP, WP, UGP
AP4.a: Create and use abstractions (representations) to solve complex	
computational problems.	
AP4.a.4.h - Demonstrate the value of abstraction for managing problem	PP, JP, WP, UGP
complexity (e.g., using a list instead of discrete variables).	
AP4.a.5.h - Understand the notion of hierarchy and abstraction in high-level	PP, JP, WP, UGP
languages, translation, instruction sets, and logic circuits.	
AP4.a.6.h - Deconstruct a complex problem into simpler parts using	PP, JP, WP, UGP
predefined constructs (e.g., functions and parameters and/or classes).	
AP4.a.7.h - (+) Compare and contrast fundamental data structures and their	PP, JP, WP, UGP
uses (e.g., lists, maps, arrays, stacks, queues, trees, graphs).	
AP4.a.8.h - (+) Critically analyze and evaluate classic algorithms (e.g., sorting,	JP, WP, UGP
searching) and use in different contexts, adapting as appropriate.	
AP4.a.9.h - (+) Discuss issues that arise when breaking large-scale problems	N/A
down into parts that must be processed simultaneously on separate systems	
(e.g., cloud computing, parallelization, concurrency).	
AP4.a.10.h - (+) Define the functionality of an abstraction without	JP, WP
implementing the abstraction.	
AP4.a.11.h - (+) Evaluate algorithms (e.g., sorting, searching) in terms of their	JP, WP, UGP
efficiency, correctness, and clarity.	
AP4.a.12.h - (+) Identify programming language features that can be used to	JP, WP, UGP
define or specify an abstraction.	
AP4.a.13.h - (+) Identify abstractions used in a solution (program or software	JP, WP, UGP
artifact) and reuse those abstractions to solve a different problem.	
AP5.a: Work together to solve computational problems using a variety of	
APE a. C. b. Design and develop a software artifact working in a team	
AP5.a.o.n - Design and develop a software artifact working in a team.	DS, WD, PP, JP, WP, UGP
AP5.a.7.h - Demonstrate how diverse collaborating impacts the design and	DS, WD, PP, JP, WP, UGP
development of software products (e.g., discussing real-world examples of	
products that have been improved through having a diverse design team or	
reflecting on their own team's development experience).	
AP5.a.8.h - (+) Demonstrate software life cycle processes (e.g., spiral,	DS, WD, PP, JP, WP, UGP
waterfall) by participating on software project teams (e.g., community	
service project with real-world clients).	
AP5.a.9.h - (+) Use version control systems, integrated development	DS, WD, PP, JP, WP, UGP
environments (IDEs), and collaboration tools and practices (code	
documentation) in a group software project.	
AP5.b: Foster an inclusive computing culture.	
AP5.b.3.h - Create design teams taking into account the strengths and	DS, WD, PP, JP, WP, UGP
perspectives of potential team members	

AP6.a: Test and debug computational solutions.		
AP6.a.4.h - Use a systematic approach and debugging tools to independently	PP, JP, WP, UGP	
debug a program (e.g., setting breakpoints, inspecting variables with a		
debugger).		
AP6.b: Develop and apply success criteria.		
AP6.b.3.h - (+) Evaluate key qualities of a program (e.g., correctness,	DS, WD, PP, JP, WP, UGP	
usability, readability, efficiency, portability, scalability) through a process		
such as a code review.		

Computing Systems (CS)	COMPUSCHOLAR COURSES
CS1.a: Identify hardware and software components.	
CS1.a.6.h - Develop and apply criteria (e.g., power consumption, processing	DS
speed, storage space, battery life, cost, operating system) for evaluating a	
computer system for a given purpose (e.g., system specification needed to	
run a game, web browsing, graphic design, or video editing).	
CS1.a.7.h - (+) Identify the functionality of various categories of hardware	DS
components and communication between them (e.g., physical layers, logic	
gates, chips, input and output devices).	
CS1.b: Understand how the components of a computer system work	
together.	
CS1.b.3.h - (+) Explain the role of operating systems (e.g., how programs are	DS
stored in memory, how data is organized and retrieved, how processes are	
managed and multi-tasked).	
CS2.a: Problem solve and debug.	
CS2.a.4.h - Devise a systematic process to identify the source of a problem	DS, WD, PP, JP, WP, UGP
within individual and connected devices (e.g., research, investigate, problem	
solve).	
CS3.a: Generalize in computer systems.	
CS3.a.2.h - Demonstrate the role and interaction of a computer embedded	DS
within a physical system, such as a consumer electronic, biological system, or	
vehicle, by creating a diagram, model, simulation, or prototype.	
CS3.a.3.h - (+) Describe the steps necessary for a computer to execute high-	DS, JP, WP
level source code (e.g., compilation to machine language, interpretation,	
fetch-decode-execute cycle).	
CS4.a: Modify and create computational artifacts.	
CS4.a.2.h - Create, extend, or modify existing programs to add new features	DS, WD, PP, JP, WP, UGP
and behaviors using different forms of inputs and outputs (e.g., inputs such	
as sensors, mouse clicks, data sets; outputs such as text, graphics, sounds).	
CS4.a.3.h - (+) Create a new artifact that uses a variety of forms of inputs and	DS, WD, PP, JP, WP, UGP
outputs (e.g., inputs such as sensors, mouse clicks, data sets; outputs such as	
text, graphics, sounds).	

Data and Analysis (DA)	COMPUSCHOLAR COURSES
DA1.a: Represent and manipulate data.	
DA1.a.4.h - Convert between binary, decimal, and hexadecimal	DS, WD, PP, JP, WP, UGP
representations of data (e.g., convert hexadecimal color codes to decimal	
percentages, ASCII/ Unicode representation).	
DA1.a.5.h - Analyze the representation tradeoffs among various forms of	DS, WD, UGP
digital information (e.g., lossy vs. lossless compression, encrypted vs.	
unencrypted, various image representations).	
DA1.a.6.h - (+) Discuss how data sequences (e.g., binary, hexadecimal, octal)	DS, WD, PP, JP, WP, UGP
can be interpreted in a variety of forms (e.g., instructions, numbers, text,	
sound, image).	
DA2.a: Gather data to support computational problem solving.	
DA2.a.4.h - Discuss techniques used to store, process, and retrieve different	DS, PP, JP, WP
amounts of information (e.g., files, databases, data warehouses).	
DA2.a.5.h - (+) Use various data collection techniques for different types of	DS, PP, JP, WP, UGP
computational problems (e.g., mobile device Global Positioning System	
(GPS), user surveys, embedded system sensors, open data sets, social media	
data sets).	
DA2.b: Categorize and analyze data.	
DA2.b.4.h - Apply basic techniques for locating and collecting small- and large-	DS, PP, JP, WP, UGP
scale data sets (e.g., creating and distributing user surveys, accessing real-	
world data sets).	
DA3.a: Communicate about data.	
DA3.a.6.h - Use computational tools to collect, transform, and organize data	DS, PP, JP, WP, UGP
about a problem to explain to others.	
DA4.a: Model with data.	
DA4.a.6.h - Create computational models that simulate real-world systems	DS, PP, JP, WP, UGP
(e.g., ecosystems, epidemics, spread of ideas).	
DA4.a.7.h - (+) Evaluate the ability of models and simulations to formulate,	DS, PP, JP, WP, UGP
refine, and test hypotheses.	
DA4.b: Identify patterns.	
DA4.b.1.h - (+) Use data analysis to identify significant patterns in complex	DS, PP, JP, WP, UGP
systems (e.g., take existing data sets and make sense of them).	
DA4.b.2.h - (+) Identify mathematical and computational patterns through	JP, WP, UGP
modeling and simulation (e.g., regression, queueing theory, discrete event	
simulation).	

Impacts of Computing (IC)	COMPUSCHOLAR COURSES	
IC1.a: Understand the impact technology has on our everyday lives and the		
effects of computing on the economy and culture.		
IC1.a.6.h - Debate the social and economic implications associated with	DS, WD, PP, JP, WP, UGP	
ethical and unethical computing practices (e.g., intellectual property rights,		
hacktivism, software piracy, new computers shipped with malware).		

IC1.a.7.h - Discuss implications of the collection and large-scale analysis of	DS, PP, JP, WP
information about individuals (e.g., how businesses, social media, and	
government collect and use personal data).	
IC1.a.8.h - Compare and debate the positive and negative impacts of	DS, PP, JP, WP
computing on behavior and culture (e.g., evolution from hitchhiking to ride-	
sharing apps, online accommodation rental services).	
IC1.a.9.h - Describe how computation shares features with art and music by	N/A
translating human intention into an artifact.	
IC1.a.10.h - (+) Develop criteria to evaluate the beneficial and harmful effects	N/A
of computing innovations on people and society.	
IC1.b: Understand the effects of computing on communication and	
relationships.	
IC1.b.5.h - Evaluate the negative impacts of electronic communication on	DS, JP, WP
personal relationships and evaluate differences between face-to-face and	
electronic communication.	
IC1.b.6.h - (+) Create a list of practices that individuals and organizations can	DS, WD, PP, JP, WP
use to encourage proper use of both electronic and face-to-face	
communication.	
IC1.b.7.h - (+) Evaluate the negative impacts on societal discourse caused by	DS
social media and electronic communities.	
IC2.a: Understand the effects of the digital divide.	
IC2.a.3.h - (+) Evaluate the impact of equity, access, and influence on the	DS
distribution of computing resources in a global society.	
IC2.b: Test and refine digital artifacts for accessibility.	
IC2.b.3.h - Design a user interface (e.g., web pages, mobile applications,	WD
animations) to be more inclusive and accessible, minimizing the impact of	
the designer's inherent bias.	
IC2.c: Collaborate ethically in the creation of digital artifacts.	
IC2.c.5.h - Ethically and safely select, observe, and contribute to global	N/A
collaboration in the development of a computational artifact (e.g., contribute	
the resolution of a bug in an open-source project platform, or contribute an	
online article).	
IC2.c.6.h - Demonstrate how computing enables new forms of experience,	DS, WD, PP, JP, WP, UGP
expression, communication, and collaboration.	
IC3.a: Understand intellectual property and fair use.	
IC3.a.4.h - Compare and contrast information access and distribution rights.	DS, WD, PP, JP, WP, UGP
IC3.b: Assess the practice of digital privacy.	
IC3.b.5.h - Research and understand misuses of private digital information in	DS, WD, PP, JP, WP, UGP
our society.	
IC3.b.6.h - Debate laws regarding an individual's digital privacy and be able to	DS, WD, PP, JP, WP, UGP
explain the main arguments from multiple perspectives.	

IC3.c Assess interrelationship between computing and society.	
IC3.c.1.h - (+) Design and implement a study that evaluates how computation	DS, PP, JP, WP
has revolutionized an aspect of our culture or predicts how an aspect might	
evolve (e.g., education, healthcare, art/entertainment, energy).	
IC3.c.2.h - (+) Debate laws and regulations that impact the development and	DS, JP, WP
use of software and be able to explain the main arguments from multiple	
perspectives.	

Networking and the Internet (NI)	COMPUSCHOLAR COURSES
NI1.a: Use secure practices for personal computing.	
NI1.a.6.h - Provide examples of personal data that should be kept secure and	DS, JP, WP
the methods by which individuals keep their private data secure.	
NI1.a.7.h - (+) Explain security issues that might lead to compromised	N/A
computer programs (e.g., circular references, ambiguous program calls, lack	
of error checking, and field size checking).	
NI1.b: Understand the importance of institutional security.	
NI1.b.3.h - Compare and contrast multiple viewpoints on cybersecurity (e.g.,	N/A
from the perspective of security experts, privacy advocates, national	
security).	
NI1.b.4.h - Identify digital and physical strategies to secure networks and	DS, JP, WP
discuss the tradeoffs between ease of access and need for security.	
NI2.a: Demonstrate how the internet works at the physical layer.	
NI2.a.8.h - Illustrate the basic components of computer networks (e.g., draw	DS, WD, JP, WP
logical and topological diagrams of networks including routers, switches,	
servers, and end user devices; create model with string and paper).	
NI2.a.9.h - (+) Explain ways in which the internet is decentralized and fault-	DS, WD, JP, WP
tolerant.	
NI2.a.10.h - (+) Simulate and discuss the issues (e.g., bandwidth, load, delay,	DS, WD, JP, WP
topology) that impact network functionality (e.g., use network simulators).	
NI2.b: Demonstrate how the internet works at the protocol layer.	
NI2.b.3.h - Describe key protocols and underlying processes of internet-	DS, WD, JP, WP
based services (e.g., http/https and Simple Mail Transfer Protocol (SMTP) or	
Internet Message Access Protocol (IMAP), routing protocols).	
NI2.c: Demonstrate how the internet works at the addressing layer.	
NI2.c.4.h - (+) Evaluate how the hierarchical nature of the Domain Name	DS, WD, JP, WP
System helps the internet work efficiently.	
NI2.d: Demonstrate and explain encryption methods.	
NI2.d.3.h - Write a program that performs basic encryption (e.g., shift cipher,	N/A
substitution cipher).	
NI2.d.4.h - (+) Explain the features of public key cryptography.	N/A
NI2.d.5.h - (+) Explore security policies by implementing and comparing	N/A
encryption and authentication strategies (e.g., secure coding, safeguarding	
keys).	