
Copyright, CompuScholar, Inc.

CS Page
Standards Link:

Course Title:

Course Title:

Course Title:

Course Title:

Course Title:

Course Title:

Wisconsin Computer Science Standards (9th - 12th Grade)

COMPUSCHOLAR COURSES

PP, JP, WP, UGP

PP, JP, WP, UGP

JP, WP, UGP

PP, JP, WP, UGP

Course Description and Syllabus
Unity Game Programming, ISBN 978-0-9887070-7-8
Course Description and Syllabus

AP1.a.8.h - Analyze a problem and design and implement an algorithmic
solution using sequence, selection, and iteration.
AP1.a.9.h - Explain and demonstrate how modeling and simulation can be
used to explore natural phenomena (e.g., flocking behaviors, queueing, life
cycles).
AP1.a.10.h - (+) Provide examples of computationally solvable problems and
difficult-to-solve problems.
AP1.a.11.h - (+) Decompose a large-scale computational problem by
identifying generalizable patterns and applying them in a solution.

Wisconsin's Computer Science standards are broken into grade bands that list skills that should be mastered by
the end of the band.

This document describes the CompuScholar course(s) that can be used to meet each standard. The citations
DS, WD, PP, JP, WP, UGP correspond to the courses listed above. For example, "DS, PP" means the skill is
covered in our Digital Savvy and Python Programming courses.

Algorithms and Programming (AP)

AP1.a: Develop algorithms.

Java Programming, ISBN 978-1-946113-99-3
Course Description and Syllabus
Windows Programming with C#, ISBN 978-0-9887070-0-9

CompuScholar Courses in this Grade Band:

Digital Savvy, ISBN 978-0-9887070-8-5

CompuScholar, Inc.

Alignment to Wisconsin Computer Science Standards

Wisconsin Standards Information:

Wisconsin Standards for Computer Science
Wisconsin Computer Science Education Page

9th - 11th Grade

Course Description and Syllabus

Course Description and Syllabus
Web Design, ISBN 978-0-9887070-3-0

Python Programming, ISBN 978-1-946113-00-9
Course Description and Syllabus

www.compuscholar.com/wisconsin Page 1 of 7

https://dpi.wi.gov/computer-science
https://dpi.wi.gov/sites/default/files/imce/standards/New%20pdfs/ComputerScienceStandards2016.pdf
https://www.compuscholar.com/schools/courses/computer-skills/
https://www.compuscholar.com/schools/courses/web-design/
https://www.compuscholar.com/schools/courses/python/
https://www.compuscholar.com/schools/courses/java/
https://www.compuscholar.com/schools/courses/intro-csharp/
https://www.compuscholar.com/schools/courses/unity/
https://www.compuscholar.com/schools/courses/intro-csharp/
https://www.compuscholar.com/schools/courses/unity/
https://www.compuscholar.com/schools/courses/java/
https://dpi.wi.gov/sites/default/files/imce/standards/New%20pdfs/ComputerScienceStandards2016.pdf
https://dpi.wi.gov/computer-science
https://www.compuscholar.com/schools/courses/computer-skills/
https://www.compuscholar.com/schools/courses/web-design/
https://www.compuscholar.com/schools/courses/python/

Copyright, CompuScholar, Inc.

JP, WP

N/A

PP, JP, WP, UGP

JP, UGP

WD, JP, WP, UGP

DS, PP, JP, WP, UGP

DS, PP, JP, WP, UGP

PP, JP, WP, UGP

PP, JP, UGP

UGP

WD, PP, JP, WP, UGP

DS, WD, PP, JP, WP, UGP

DS, JP, WP, UGP

DS, JP, WP

PP, JP, WP, UGP

DS, WD, PP, JP, WP, UGP

WD, PP, JP, WP, UGP

AP2.a.10.h - Use user-centered research and design techniques (e.g., surveys,
interviews) to create software solutions.

AP2.a.5.i - Use mathematical operations to change a value stored in a
variable.
AP2.a.13.h - (+) Decompose a computational problem by creating new data
types, functions, or classes.

AP2.a.11.h - Integrate grade-level appropriate mathematical techniques,
concepts, and processes in the creation of computational artifacts.

AP3.c.3.h - (+) Describe how Artificial Intelligence (AI) drives many software
and physical systems (e.g., autonomous robots, computer vision, pattern
recognition, text analysis).
AP3.c.4.h - Write appropriate documentation for programs.

AP1.a.12.h - (+) Illustrate the flow of execution of a recursive algorithm.

AP1.a.13.h - (+) Describe how parallel processing can be used to solve large
computational problems (e.g., SETI at Home, FoldIt).
AP1.a.14.h - (+) Develop and use a series of test cases to verify that a
program performs according to its design specifications.
AP1.a.15.h - (+) Explain the value of heuristic algorithms (discovery methods)
to approximate solutions for difficult-to-solve computational problems.
AP2.a: Develop and implement an artifact.

AP3.a: Recognize and cite sources.
AP3.a.4.h - Compare and contrast various software licensing schemes (e.g.,
open source, freeware, commercial).
AP3.b: Communicate about technical and social issues.
AP3.b.8.h - Evaluate and analyze how algorithms have impacted our society
and discuss the benefits and harmful impacts of a variety of technological
innovations.

AP2.a.14.h - (+) Develop programs for multiple computing platforms (e.g.,
computer desktop, web, mobile).
AP2.a.15.h - (+) Implement an Artificial Intelligence (AI) algorithm to play a
game against a human opponent or solve a problem.
AP2.a.16.h - (+) Demonstrate code reuse by creating programming solutions
using libraries and application program interfaces (APIs) (e.g., graphics
libraries, maps, API).

AP3.b.9.h - (+) Compare a variety of programming languages and identify
features that make them useful for solving different types of problems and
developing different kinds of systems (e.g., declarative, logic, parallel,
functional, compiled, interpreted, real-time).
AP3.b.10.h - (+) Modify an existing program to add additional functionality
and discuss intended and unintended implications (e.g., breaking other
functionality).
AP3.c: Document code.

www.compuscholar.com/wisconsin Page 2 of 7

Copyright, CompuScholar, Inc.

WD, PP, JP, WP, UGP

DS, WD, PP, JP, WP, UGP

PP, JP, WP, UGP

PP, JP, WP, UGP

PP, JP, WP, UGP

PP, JP, WP, UGP

JP, WP, UGP

N/A

JP, WP

JP, WP, UGP

JP, WP, UGP

JP, WP, UGP

DS, WD, PP, JP, WP, UGP

DS, WD, PP, JP, WP, UGP

DS, WD, PP, JP, WP, UGP

DS, WD, PP, JP, WP, UGP

DS, WD, PP, JP, WP, UGP

AP5.a.8.h - (+) Demonstrate software life cycle processes (e.g., spiral,
waterfall) by participating on software project teams (e.g., community
service project with real-world clients).

AP5.a.6.h - Design and develop a software artifact working in a team.

AP5.a.7.h - Demonstrate how diverse collaborating impacts the design and
development of software products (e.g., discussing real-world examples of
products that have been improved through having a diverse design team or
reflecting on their own team's development experience).

AP4.a.4.h - Demonstrate the value of abstraction for managing problem
complexity (e.g., using a list instead of discrete variables).
AP4.a.5.h - Understand the notion of hierarchy and abstraction in high-level
languages, translation, instruction sets, and logic circuits.
AP4.a.6.h - Deconstruct a complex problem into simpler parts using
predefined constructs (e.g., functions and parameters and/or classes).
AP4.a.7.h - (+) Compare and contrast fundamental data structures and their
uses (e.g., lists, maps, arrays, stacks, queues, trees, graphs).
AP4.a.8.h - (+) Critically analyze and evaluate classic algorithms (e.g., sorting,
searching) and use in different contexts, adapting as appropriate.

AP5.a: Work together to solve computational problems using a variety of
resources.

AP5.a.9.h - (+) Use version control systems, integrated development
environments (IDEs), and collaboration tools and practices (code
documentation) in a group software project.

AP3.c.5.h - (+) Use application programming interface (APIs) documentation
resources.
AP3.c.6.h - Use online resources to answer technical questions.

AP4.a: Create and use abstractions (representations) to solve complex
computational problems.

AP4.a.13.h - (+) Identify abstractions used in a solution (program or software
artifact) and reuse those abstractions to solve a different problem.

AP4.a.12.h - (+) Identify programming language features that can be used to
define or specify an abstraction.

AP4.a.9.h - (+) Discuss issues that arise when breaking large-scale problems
down into parts that must be processed simultaneously on separate systems
(e.g., cloud computing, parallelization, concurrency).
AP4.a.10.h - (+) Define the functionality of an abstraction without
implementing the abstraction.
AP4.a.11.h - (+) Evaluate algorithms (e.g., sorting, searching) in terms of their
efficiency, correctness, and clarity.

AP5.b: Foster an inclusive computing culture.
AP5.b.3.h - Create design teams taking into account the strengths and
perspectives of potential team members

www.compuscholar.com/wisconsin Page 3 of 7

Copyright, CompuScholar, Inc.

PP, JP, WP, UGP

DS, WD, PP, JP, WP, UGP

COMPUSCHOLAR COURSES

DS

DS

DS

DS, WD, PP, JP, WP, UGP

DS

DS, JP, WP

DS, WD, PP, JP, WP, UGP

DS, WD, PP, JP, WP, UGP

CS1.b.3.h - (+) Explain the role of operating systems (e.g., how programs are
stored in memory, how data is organized and retrieved, how processes are
managed and multi-tasked).

CS1.a: Identify hardware and software components.

CS1.a.7.h - (+) Identify the functionality of various categories of hardware
components and communication between them (e.g., physical layers, logic
gates, chips, input and output devices).

CS1.a.6.h - Develop and apply criteria (e.g., power consumption, processing
speed, storage space, battery life, cost, operating system) for evaluating a
computer system for a given purpose (e.g., system specification needed to
run a game, web browsing, graphic design, or video editing).

Computing Systems (CS)

CS1.b: Understand how the components of a computer system work
together.

CS2.a: Problem solve and debug.
CS2.a.4.h - Devise a systematic process to identify the source of a problem
within individual and connected devices (e.g., research, investigate, problem
solve).

CS3.a.3.h - (+) Describe the steps necessary for a computer to execute high-
level source code (e.g., compilation to machine language, interpretation,
fetch-decode-execute cycle).

AP6.a.4.h - Use a systematic approach and debugging tools to independently
debug a program (e.g., setting breakpoints, inspecting variables with a
debugger).

CS4.a: Modify and create computational artifacts.

CS4.a.3.h - (+) Create a new artifact that uses a variety of forms of inputs and
outputs (e.g., inputs such as sensors, mouse clicks, data sets; outputs such as
text, graphics, sounds).

AP6.b: Develop and apply success criteria.
AP6.b.3.h - (+) Evaluate key qualities of a program (e.g., correctness,
usability, readability, efficiency, portability, scalability) through a process
such as a code review.

AP6.a: Test and debug computational solutions.

CS3.a: Generalize in computer systems.
CS3.a.2.h - Demonstrate the role and interaction of a computer embedded
within a physical system, such as a consumer electronic, biological system, or
vehicle, by creating a diagram, model, simulation, or prototype.

CS4.a.2.h - Create, extend, or modify existing programs to add new features
and behaviors using different forms of inputs and outputs (e.g., inputs such
as sensors, mouse clicks, data sets; outputs such as text, graphics, sounds).

www.compuscholar.com/wisconsin Page 4 of 7

Copyright, CompuScholar, Inc.

COMPUSCHOLAR COURSES

DS, WD, PP, JP, WP, UGP

DS, WD, UGP

DS, WD, PP, JP, WP, UGP

DS, PP, JP, WP

DS, PP, JP, WP, UGP

DS, PP, JP, WP, UGP

DS, PP, JP, WP, UGP

DS, PP, JP, WP, UGP

DS, PP, JP, WP, UGP

DS, PP, JP, WP, UGP

JP, WP, UGP

COMPUSCHOLAR COURSES

DS, WD, PP, JP, WP, UGP

DA4.b.1.h - (+) Use data analysis to identify significant patterns in complex
systems (e.g., take existing data sets and make sense of them).

IC1.a.6.h - Debate the social and economic implications associated with
ethical and unethical computing practices (e.g., intellectual property rights,
hacktivism, software piracy, new computers shipped with malware).

Impacts of Computing (IC)

DA1.a.4.h - Convert between binary, decimal, and hexadecimal
representations of data (e.g., convert hexadecimal color codes to decimal
percentages, ASCII/ Unicode representation).
DA1.a.5.h - Analyze the representation tradeoffs among various forms of
digital information (e.g., lossy vs. lossless compression, encrypted vs.
unencrypted, various image representations).

DA2.a.4.h - Discuss techniques used to store, process, and retrieve different
amounts of information (e.g., files, databases, data warehouses).

DA4.a.6.h - Create computational models that simulate real-world systems
(e.g., ecosystems, epidemics, spread of ideas).
DA4.a.7.h - (+) Evaluate the ability of models and simulations to formulate,
refine, and test hypotheses.

Data and Analysis (DA)

DA1.a: Represent and manipulate data.

DA2.b.4.h - Apply basic techniques for locating and collecting small- and large-
scale data sets (e.g., creating and distributing user surveys, accessing real-
world data sets).

DA3.a.6.h - Use computational tools to collect, transform, and organize data
about a problem to explain to others.

DA1.a.6.h - (+) Discuss how data sequences (e.g., binary, hexadecimal, octal)
can be interpreted in a variety of forms (e.g., instructions, numbers, text,
sound, image).

DA4.a: Model with data.

DA3.a: Communicate about data.

DA4.b: Identify patterns.

IC1.a: Understand the impact technology has on our everyday lives and the
effects of computing on the economy and culture.

DA4.b.2.h - (+) Identify mathematical and computational patterns through
modeling and simulation (e.g., regression, queueing theory, discrete event
simulation).

DA2.a: Gather data to support computational problem solving.

DA2.b: Categorize and analyze data.

DA2.a.5.h - (+) Use various data collection techniques for different types of
computational problems (e.g., mobile device Global Positioning System
(GPS), user surveys, embedded system sensors, open data sets, social media
data sets).

www.compuscholar.com/wisconsin Page 5 of 7

Copyright, CompuScholar, Inc.

DS, PP, JP, WP

DS, PP, JP, WP

N/A

N/A

DS, JP, WP

DS, WD, PP, JP, WP

DS

DS

WD

N/A

DS, WD, PP, JP, WP, UGP

DS, WD, PP, JP, WP, UGP

DS, WD, PP, JP, WP, UGP

DS, WD, PP, JP, WP, UGP

IC1.a.7.h - Discuss implications of the collection and large-scale analysis of
information about individuals (e.g., how businesses, social media, and
government collect and use personal data).
IC1.a.8.h - Compare and debate the positive and negative impacts of
computing on behavior and culture (e.g., evolution from hitchhiking to ride-
sharing apps, online accommodation rental services).

IC1.b.5.h - Evaluate the negative impacts of electronic communication on
personal relationships and evaluate differences between face-to-face and
electronic communication.

IC1.a.10.h - (+) Develop criteria to evaluate the beneficial and harmful effects
of computing innovations on people and society.

IC3.a.4.h - Compare and contrast information access and distribution rights.

IC1.a.9.h - Describe how computation shares features with art and music by
translating human intention into an artifact.

IC1.b: Understand the effects of computing on communication and
relationships.

IC1.b.7.h - (+) Evaluate the negative impacts on societal discourse caused by
social media and electronic communities.

IC1.b.6.h - (+) Create a list of practices that individuals and organizations can
use to encourage proper use of both electronic and face-to-face
communication.

IC2.b.3.h - Design a user interface (e.g., web pages, mobile applications,
animations) to be more inclusive and accessible, minimizing the impact of
the designer's inherent bias.
IC2.c: Collaborate ethically in the creation of digital artifacts.

IC2.c.6.h - Demonstrate how computing enables new forms of experience,
expression, communication, and collaboration.

IC2.a: Understand the effects of the digital divide.
IC2.a.3.h - (+) Evaluate the impact of equity, access, and influence on the
distribution of computing resources in a global society.
IC2.b: Test and refine digital artifacts for accessibility.

IC2.c.5.h - Ethically and safely select, observe, and contribute to global
collaboration in the development of a computational artifact (e.g., contribute
the resolution of a bug in an open-source project platform, or contribute an
online article).

IC3.a: Understand intellectual property and fair use.

IC3.b.5.h - Research and understand misuses of private digital information in
our society.
IC3.b.6.h - Debate laws regarding an individual’s digital privacy and be able to
explain the main arguments from multiple perspectives.

IC3.b: Assess the practice of digital privacy.

www.compuscholar.com/wisconsin Page 6 of 7

Copyright, CompuScholar, Inc.

DS, PP, JP, WP

DS, JP, WP

COMPUSCHOLAR COURSES

DS, JP, WP

N/A

N/A

DS, JP, WP

DS, WD, JP, WP

DS, WD, JP, WP

DS, WD, JP, WP

DS, WD, JP, WP

DS, WD, JP, WP

N/A

N/A

N/A

IC3.c Assess interrelationship between computing and society.

IC3.c.2.h - (+) Debate laws and regulations that impact the development and
use of software and be able to explain the main arguments from multiple
perspectives.

IC3.c.1.h - (+) Design and implement a study that evaluates how computation
has revolutionized an aspect of our culture or predicts how an aspect might
evolve (e.g., education, healthcare, art/entertainment, energy).

NI1.b.3.h - Compare and contrast multiple viewpoints on cybersecurity (e.g.,
from the perspective of security experts, privacy advocates, national
security).

NI2.a.8.h - Illustrate the basic components of computer networks (e.g., draw
logical and topological diagrams of networks including routers, switches,
servers, and end user devices; create model with string and paper).

NI1.a.6.h - Provide examples of personal data that should be kept secure and
the methods by which individuals keep their private data secure.

NI1.b: Understand the importance of institutional security.

NI2.a.10.h - (+) Simulate and discuss the issues (e.g., bandwidth, load, delay,
topology) that impact network functionality (e.g., use network simulators).

NI2.d: Demonstrate and explain encryption methods.

NI2.d.5.h - (+) Explore security policies by implementing and comparing
encryption and authentication strategies (e.g., secure coding, safeguarding
keys).

NI2.c: Demonstrate how the internet works at the addressing layer.
NI2.c.4.h - (+) Evaluate how the hierarchical nature of the Domain Name
System helps the internet work efficiently.

NI2.b: Demonstrate how the internet works at the protocol layer.
NI2.b.3.h - Describe key protocols and underlying processes of internet-
based services (e.g., http/https and Simple Mail Transfer Protocol (SMTP) or
Internet Message Access Protocol (IMAP), routing protocols).

NI2.d.4.h - (+) Explain the features of public key cryptography.

NI2.d.3.h - Write a program that performs basic encryption (e.g., shift cipher,
substitution cipher).

NI2.a.9.h - (+) Explain ways in which the internet is decentralized and fault-
tolerant.

NI2.a: Demonstrate how the internet works at the physical layer.

Networking and the Internet (NI)

NI1.a: Use secure practices for personal computing.

NI1.a.7.h - (+) Explain security issues that might lead to compromised
computer programs (e.g., circular references, ambiguous program calls, lack
of error checking, and field size checking).

NI1.b.4.h - Identify digital and physical strategies to secure networks and
discuss the tradeoffs between ease of access and need for security.

www.compuscholar.com/wisconsin Page 7 of 7

	Table 1

